| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: adv7842: Avoid possible out-of-bounds array accesses in adv7842_cp_log_status()
It's possible for cp_read() and hdmi_read() to return -EIO. Those
values are further used as indexes for accessing arrays.
Fix that by checking return values where it's needed.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Use spinlock for context list protection lock
Previously a mutex was added to protect the encoder and decoder context
lists from unexpected changes originating from the SCP IP block, causing
the context pointer to go invalid, resulting in a NULL pointer
dereference in the IPI handler.
Turns out on the MT8173, the VPU IPI handler is called from hard IRQ
context. This causes a big warning from the scheduler. This was first
reported downstream on the ChromeOS kernels, but is also reproducible
on mainline using Fluster with the FFmpeg v4l2m2m decoders. Even though
the actual capture format is not supported, the affected code paths
are triggered.
Since this lock just protects the context list and operations on it are
very fast, it should be OK to switch to a spinlock. |
| The Responsive Accordion Slider plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the 'resp_accordion_silder_save_images' function in all versions up to, and including, 1.2.2. This makes it possible for authenticated attackers, with Contributor-level access and above, to modify any slider's image metadata including titles, descriptions, alt text, and links. |
| The Flat Shipping Rate by City for WooCommerce plugin for WordPress is vulnerable to time-based SQL Injection via the 'cities' parameter in all versions up to, and including, 1.0.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Shop Manager-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| The SearchWiz plugin for WordPress is vulnerable to Stored Cross-Site Scripting via post titles in search results in all versions up to, and including, 1.0.0. This is due to the plugin using `esc_attr()` instead of `esc_html()` when outputting post titles in search results. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in post titles that will execute whenever a user performs a search and views the search results page. |
| Multi-thread race condition vulnerability in the camera framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| The VSCode extension for Spring CLI are vulnerable to command injection, resulting in command execution on the users machine. |
| Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0. |
| Bitrix24 contains an authenticated remote code execution vulnerability that allows logged-in attackers to execute arbitrary system commands through the PHP command line admin interface. Attackers can leverage the vulnerability by sending crafted POST requests to the administrative endpoint with system commands to execute code with the web application's privileges. |
| ITeC ITeCProteccioAppServer contains an unquoted service path vulnerability that allows local attackers to execute code with elevated system privileges. Attackers can insert a malicious executable in the service path to gain elevated access during service restart or system reboot. |
| Multi-thread race condition vulnerability in the camera framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| Double free vulnerability in the multi-mode input module.
Impact: Successful exploitation of this vulnerability may affect the input function. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer
When advancing the target expiration for the guest's APIC timer in periodic
mode, set the expiration to "now" if the target expiration is in the past
(similar to what is done in update_target_expiration()). Blindly adding
the period to the previous target expiration can result in KVM generating
a practically unbounded number of hrtimer IRQs due to programming an
expired timer over and over. In extreme scenarios, e.g. if userspace
pauses/suspends a VM for an extended duration, this can even cause hard
lockups in the host.
Currently, the bug only affects Intel CPUs when using the hypervisor timer
(HV timer), a.k.a. the VMX preemption timer. Unlike the software timer,
a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the
HV timer only runs while the guest is active. As a result, if the vCPU
does not run for an extended duration, there will be a huge gap between
the target expiration and the current time the vCPU resumes running.
Because the target expiration is incremented by only one period on each
timer expiration, this leads to a series of timer expirations occurring
rapidly after the vCPU/VM resumes.
More critically, when the vCPU first triggers a periodic HV timer
expiration after resuming, advancing the expiration by only one period
will result in a target expiration in the past. As a result, the delta
may be calculated as a negative value. When the delta is converted into
an absolute value (tscdeadline is an unsigned u64), the resulting value
can overflow what the HV timer is capable of programming. I.e. the large
value will exceed the VMX Preemption Timer's maximum bit width of
cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the
HV timer to the software timer (hrtimers).
After switching to the software timer, periodic timer expiration callbacks
may be executed consecutively within a single clock interrupt handler,
because hrtimers honors KVM's request for an expiration in the past and
immediately re-invokes KVM's callback after reprogramming. And because
the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer
over and over until the target expiration is advanced to "now" can result
in a hard lockup.
E.g. the following hard lockup was triggered in the host when running a
Windows VM (only relevant because it used the APIC timer in periodic mode)
after resuming the VM from a long suspend (in the host).
NMI watchdog: Watchdog detected hard LOCKUP on cpu 45
...
RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm]
...
RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046
RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc
RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500
RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0
R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0
R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8
FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0
PKRU: 55555554
Call Trace:
<IRQ>
apic_timer_fn+0x31/0x50 [kvm]
__hrtimer_run_queues+0x100/0x280
hrtimer_interrupt+0x100/0x210
? ttwu_do_wakeup+0x19/0x160
smp_apic_timer_interrupt+0x6a/0x130
apic_timer_interrupt+0xf/0x20
</IRQ>
Moreover, if the suspend duration of the virtual machine is not long enough
to trigger a hard lockup in this scenario, since commit 98c25ead5eda
("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM
will continue using the software timer until the guest reprograms the APIC
timer in some way. Since the periodic timer does not require frequent APIC
timer register programming, the guest may continue to use the software
timer in
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: use global inline_xattr_slab instead of per-sb slab cache
As Hong Yun reported in mailing list:
loop7: detected capacity change from 0 to 131072
------------[ cut here ]------------
kmem_cache of name 'f2fs_xattr_entry-7:7' already exists
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline]
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline]
RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
Call Trace:
__kmem_cache_create include/linux/slab.h:353 [inline]
f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]
f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843
f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918
get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692
vfs_get_tree+0x43/0x140 fs/super.c:1815
do_new_mount+0x201/0x550 fs/namespace.c:3808
do_mount fs/namespace.c:4136 [inline]
__do_sys_mount fs/namespace.c:4347 [inline]
__se_sys_mount+0x298/0x2f0 fs/namespace.c:4324
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug can be reproduced w/ below scripts:
- mount /dev/vdb /mnt1
- mount /dev/vdc /mnt2
- umount /mnt1
- mounnt /dev/vdb /mnt1
The reason is if we created two slab caches, named f2fs_xattr_entry-7:3
and f2fs_xattr_entry-7:7, and they have the same slab size. Actually,
slab system will only create one slab cache core structure which has
slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same
structure and cache address.
So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will
decrease reference count of slab cache, rather than release slab cache
entirely, since there is one more user has referenced the cache.
Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again,
slab system will find that there is existed cache which has the same name
and trigger the warning.
Let's changes to use global inline_xattr_slab instead of per-sb slab cache
for fixing. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: avoid deadlock on fallback while reinjecting
Jakub reported an MPTCP deadlock at fallback time:
WARNING: possible recursive locking detected
6.18.0-rc7-virtme #1 Not tainted
--------------------------------------------
mptcp_connect/20858 is trying to acquire lock:
ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_try_fallback+0xd8/0x280
but task is already holding lock:
ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&msk->fallback_lock);
lock(&msk->fallback_lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by mptcp_connect/20858:
#0: ff1100001da18290 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x114/0x1bc0
#1: ff1100001db40fd0 (k-sk_lock-AF_INET#2){+.+.}-{0:0}, at: __mptcp_retrans+0x2cb/0xaa0
#2: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0
stack backtrace:
CPU: 0 UID: 0 PID: 20858 Comm: mptcp_connect Not tainted 6.18.0-rc7-virtme #1 PREEMPT(full)
Hardware name: Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xa0
print_deadlock_bug.cold+0xc0/0xcd
validate_chain+0x2ff/0x5f0
__lock_acquire+0x34c/0x740
lock_acquire.part.0+0xbc/0x260
_raw_spin_lock_bh+0x38/0x50
__mptcp_try_fallback+0xd8/0x280
mptcp_sendmsg_frag+0x16c2/0x3050
__mptcp_retrans+0x421/0xaa0
mptcp_release_cb+0x5aa/0xa70
release_sock+0xab/0x1d0
mptcp_sendmsg+0xd5b/0x1bc0
sock_write_iter+0x281/0x4d0
new_sync_write+0x3c5/0x6f0
vfs_write+0x65e/0xbb0
ksys_write+0x17e/0x200
do_syscall_64+0xbb/0xfd0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fa5627cbc5e
Code: 4d 89 d8 e8 14 bd 00 00 4c 8b 5d f8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 11 c9 c3 0f 1f 80 00 00 00 00 48 8b 45 10 0f 05 <c9> c3 83 e2 39 83 fa 08 75 e7 e8 13 ff ff ff 0f 1f 00 f3 0f 1e fa
RSP: 002b:00007fff1fe14700 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fa5627cbc5e
RDX: 0000000000001f9c RSI: 00007fff1fe16984 RDI: 0000000000000005
RBP: 00007fff1fe14710 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000202 R12: 00007fff1fe16920
R13: 0000000000002000 R14: 0000000000001f9c R15: 0000000000001f9c
The packet scheduler could attempt a reinjection after receiving an
MP_FAIL and before the infinite map has been transmitted, causing a
deadlock since MPTCP needs to do the reinjection atomically from WRT
fallback.
Address the issue explicitly avoiding the reinjection in the critical
scenario. Note that this is the only fallback critical section that
could potentially send packets and hit the double-lock. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: change all pageblocks migrate type on coalescing
When a page is freed it coalesces with a buddy into a higher order page
while possible. When the buddy page migrate type differs, it is expected
to be updated to match the one of the page being freed.
However, only the first pageblock of the buddy page is updated, while the
rest of the pageblocks are left unchanged.
That causes warnings in later expand() and other code paths (like below),
since an inconsistency between migration type of the list containing the
page and the page-owned pageblocks migration types is introduced.
[ 308.986589] ------------[ cut here ]------------
[ 308.987227] page type is 0, passed migratetype is 1 (nr=256)
[ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270
[ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E)
[ 308.987439] Unloaded tainted modules: hmac_s390(E):2
[ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT
[ 308.987657] Tainted: [E]=UNSIGNED_MODULE
[ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0)
[ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270)
[ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88
[ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300
[ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008
[ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0
[ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4
00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60
#00000349976fa5fc: af000000 mc 0,0
>00000349976fa600: a7f4ff4c brc 15,00000349976fa498
00000349976fa604: b9040026 lgr %r2,%r6
00000349976fa608: c0300088317f larl %r3,0000034998800906
00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0
00000349976fa614: af000000 mc 0,0
[ 308.987734] Call Trace:
[ 308.987738] [<00000349976fa600>] expand+0x240/0x270
[ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270)
[ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940
[ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0
[ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40
[ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0
[ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400
[ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220
[ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0
[ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0
[ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240
[ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210
[ 308.987804] [<00000349976cb0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: fix "UBSAN: shift-out-of-bounds error"
This patch ensures that the RX ring size (rx_pending) is not
set below the permitted length. This avoids UBSAN
shift-out-of-bounds errors when users passes small or zero
ring sizes via ethtool -G. |
| A flaw was found in libsoup’s WebSocket frame processing when handling incoming messages. If a non-default configuration is used where the maximum incoming payload size is unset, the library may read memory outside the intended bounds. This can cause unintended memory exposure or a crash. Applications using libsoup’s WebSocket support with this configuration may be impacted. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd/selftest: Check for overflow in IOMMU_TEST_OP_ADD_RESERVED
syzkaller found it could overflow math in the test infrastructure and
cause a WARN_ON by corrupting the reserved interval tree. This only
effects test kernels with CONFIG_IOMMUFD_TEST.
Validate the user input length in the test ioctl. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: exynos-clkout: Assign .num before accessing .hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer (UBSAN_BOUNDS)
about the number of elements in .hws[], so that it can warn when .hws[]
is accessed out of bounds. As noted in that change, the __counted_by
member must be initialized with the number of elements before the first
array access happens, otherwise there will be a warning from each access
prior to the initialization because the number of elements is zero. This
occurs in exynos_clkout_probe() due to .num being assigned after .hws[]
has been accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/samsung/clk-exynos-clkout.c:178:18
index 0 is out of range for type 'clk_hw *[*]'
Move the .num initialization to before the first access of .hws[],
clearing up the warning. |