| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel: Fix null ptr deref in btintel_read_version
If hci_cmd_sync_complete() is triggered and skb is NULL, then
hdev->req_skb is NULL, which will cause this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/bios: Tolerate devdata==NULL in intel_bios_encoder_supports_dp_dual_mode()
If we have no VBT, or the VBT didn't declare the encoder
in question, we won't have the 'devdata' for the encoder.
Instead of oopsing just bail early.
We won't be able to tell whether the port is DP++ or not,
but so be it.
(cherry picked from commit 26410896206342c8a80d2b027923e9ee7d33b733) |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: core: Add TMF to tmr_list handling
An abort that is responded to by iSCSI itself is added to tmr_list but does
not go to target core. A LUN_RESET that goes through tmr_list takes a
refcounter on the abort and waits for completion. However, the abort will
be never complete because it was not started in target core.
Unable to locate ITT: 0x05000000 on CID: 0
Unable to locate RefTaskTag: 0x05000000 on CID: 0.
wait_for_tasks: Stopping tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
wait for tasks: tmf LUN_RESET with tag 0x0 ref_task_tag 0x0 i_state 34 t_state ISTATE_PROCESSING refcnt 2 transport_state active,stop,fabric_stop
...
INFO: task kworker/0:2:49 blocked for more than 491 seconds.
task:kworker/0:2 state:D stack: 0 pid: 49 ppid: 2 flags:0x00000800
Workqueue: events target_tmr_work [target_core_mod]
Call Trace:
__switch_to+0x2c4/0x470
_schedule+0x314/0x1730
schedule+0x64/0x130
schedule_timeout+0x168/0x430
wait_for_completion+0x140/0x270
target_put_cmd_and_wait+0x64/0xb0 [target_core_mod]
core_tmr_lun_reset+0x30/0xa0 [target_core_mod]
target_tmr_work+0xc8/0x1b0 [target_core_mod]
process_one_work+0x2d4/0x5d0
worker_thread+0x78/0x6c0
To fix this, only add abort to tmr_list if it will be handled by target
core. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: soc-compress: Reposition and add pcm_mutex
If panic_on_warn is set and compress stream(DPCM) is started,
then kernel panic occurred because card->pcm_mutex isn't held appropriately.
In the following functions, warning were issued at this line
"snd_soc_dpcm_mutex_assert_held".
static int dpcm_be_connect(struct snd_soc_pcm_runtime *fe,
struct snd_soc_pcm_runtime *be, int stream)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
void dpcm_be_disconnect(struct snd_soc_pcm_runtime *fe, int stream)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
void snd_soc_runtime_action(struct snd_soc_pcm_runtime *rtd,
int stream, int action)
{
...
snd_soc_dpcm_mutex_assert_held(rtd);
...
}
int dpcm_dapm_stream_event(struct snd_soc_pcm_runtime *fe, int dir,
int event)
{
...
snd_soc_dpcm_mutex_assert_held(fe);
...
}
These functions are called by soc_compr_set_params_fe, soc_compr_open_fe
and soc_compr_free_fe
without pcm_mutex locking. And this is call stack.
[ 414.527841][ T2179] pc : dpcm_process_paths+0x5a4/0x750
[ 414.527848][ T2179] lr : dpcm_process_paths+0x37c/0x750
[ 414.527945][ T2179] Call trace:
[ 414.527949][ T2179] dpcm_process_paths+0x5a4/0x750
[ 414.527955][ T2179] soc_compr_open_fe+0xb0/0x2cc
[ 414.527972][ T2179] snd_compr_open+0x180/0x248
[ 414.527981][ T2179] snd_open+0x15c/0x194
[ 414.528003][ T2179] chrdev_open+0x1b0/0x220
[ 414.528023][ T2179] do_dentry_open+0x30c/0x594
[ 414.528045][ T2179] vfs_open+0x34/0x44
[ 414.528053][ T2179] path_openat+0x914/0xb08
[ 414.528062][ T2179] do_filp_open+0xc0/0x170
[ 414.528068][ T2179] do_sys_openat2+0x94/0x18c
[ 414.528076][ T2179] __arm64_sys_openat+0x78/0xa4
[ 414.528084][ T2179] invoke_syscall+0x48/0x10c
[ 414.528094][ T2179] el0_svc_common+0xbc/0x104
[ 414.528099][ T2179] do_el0_svc+0x34/0xd8
[ 414.528103][ T2179] el0_svc+0x34/0xc4
[ 414.528125][ T2179] el0t_64_sync_handler+0x8c/0xfc
[ 414.528133][ T2179] el0t_64_sync+0x1a0/0x1a4
[ 414.528142][ T2179] Kernel panic - not syncing: panic_on_warn set ...
So, I reposition and add pcm_mutex to resolve lockdep error. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Release folio lock on fscache read hit.
Under the current code, when cifs_readpage_worker is called, the call
contract is that the callee should unlock the page. This is documented
in the read_folio section of Documentation/filesystems/vfs.rst as:
> The filesystem should unlock the folio once the read has completed,
> whether it was successful or not.
Without this change, when fscache is in use and cache hit occurs during
a read, the page lock is leaked, producing the following stack on
subsequent reads (via mmap) to the page:
$ cat /proc/3890/task/12864/stack
[<0>] folio_wait_bit_common+0x124/0x350
[<0>] filemap_read_folio+0xad/0xf0
[<0>] filemap_fault+0x8b1/0xab0
[<0>] __do_fault+0x39/0x150
[<0>] do_fault+0x25c/0x3e0
[<0>] __handle_mm_fault+0x6ca/0xc70
[<0>] handle_mm_fault+0xe9/0x350
[<0>] do_user_addr_fault+0x225/0x6c0
[<0>] exc_page_fault+0x84/0x1b0
[<0>] asm_exc_page_fault+0x27/0x30
This requires a reboot to resolve; it is a deadlock.
Note however that the call to cifs_readpage_from_fscache does mark the
page clean, but does not free the folio lock. This happens in
__cifs_readpage_from_fscache on success. Releasing the lock at that
point however is not appropriate as cifs_readahead also calls
cifs_readpage_from_fscache and *does* unconditionally release the lock
after its return. This change therefore effectively makes
cifs_readpage_worker work like cifs_readahead. |
| In the Linux kernel, the following vulnerability has been resolved:
kobject: Add sanity check for kset->kobj.ktype in kset_register()
When I register a kset in the following way:
static struct kset my_kset;
kobject_set_name(&my_kset.kobj, "my_kset");
ret = kset_register(&my_kset);
A null pointer dereference exception is occurred:
[ 4453.568337] Unable to handle kernel NULL pointer dereference at \
virtual address 0000000000000028
... ...
[ 4453.810361] Call trace:
[ 4453.813062] kobject_get_ownership+0xc/0x34
[ 4453.817493] kobject_add_internal+0x98/0x274
[ 4453.822005] kset_register+0x5c/0xb4
[ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset]
... ...
Because I didn't initialize my_kset.kobj.ktype.
According to the description in Documentation/core-api/kobject.rst:
- A ktype is the type of object that embeds a kobject. Every structure
that embeds a kobject needs a corresponding ktype.
So add sanity check to make sure kset->kobj.ktype is not NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix BUG_ON condition in btrfs_cancel_balance
Pausing and canceling balance can race to interrupt balance lead to BUG_ON
panic in btrfs_cancel_balance. The BUG_ON condition in btrfs_cancel_balance
does not take this race scenario into account.
However, the race condition has no other side effects. We can fix that.
Reproducing it with panic trace like this:
kernel BUG at fs/btrfs/volumes.c:4618!
RIP: 0010:btrfs_cancel_balance+0x5cf/0x6a0
Call Trace:
<TASK>
? do_nanosleep+0x60/0x120
? hrtimer_nanosleep+0xb7/0x1a0
? sched_core_clone_cookie+0x70/0x70
btrfs_ioctl_balance_ctl+0x55/0x70
btrfs_ioctl+0xa46/0xd20
__x64_sys_ioctl+0x7d/0xa0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Race scenario as follows:
> mutex_unlock(&fs_info->balance_mutex);
> --------------------
> .......issue pause and cancel req in another thread
> --------------------
> ret = __btrfs_balance(fs_info);
>
> mutex_lock(&fs_info->balance_mutex);
> if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
> btrfs_info(fs_info, "balance: paused");
> btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
> } |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix DFS traversal oops without CONFIG_CIFS_DFS_UPCALL
When compiled with CONFIG_CIFS_DFS_UPCALL disabled, cifs_dfs_d_automount
is NULL. cifs.ko logic for mapping CIFS_FATTR_DFS_REFERRAL attributes to
S_AUTOMOUNT and corresponding dentry flags is retained regardless of
CONFIG_CIFS_DFS_UPCALL, leading to a NULL pointer dereference in
VFS follow_automount() when traversing a DFS referral link:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
Call Trace:
<TASK>
__traverse_mounts+0xb5/0x220
? cifs_revalidate_mapping+0x65/0xc0 [cifs]
step_into+0x195/0x610
? lookup_fast+0xe2/0xf0
path_lookupat+0x64/0x140
filename_lookup+0xc2/0x140
? __create_object+0x299/0x380
? kmem_cache_alloc+0x119/0x220
? user_path_at_empty+0x31/0x50
user_path_at_empty+0x31/0x50
__x64_sys_chdir+0x2a/0xd0
? exit_to_user_mode_prepare+0xca/0x100
do_syscall_64+0x42/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
This fix adds an inline cifs_dfs_d_automount() {return -EREMOTE} handler
when CONFIG_CIFS_DFS_UPCALL is disabled. An alternative would be to
avoid flagging S_AUTOMOUNT, etc. without CONFIG_CIFS_DFS_UPCALL. This
approach was chosen as it provides more control over the error path. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't return unset power in ieee80211_get_tx_power()
We can get a UBSAN warning if ieee80211_get_tx_power() returns the
INT_MIN value mac80211 internally uses for "unset power level".
UBSAN: signed-integer-overflow in net/wireless/nl80211.c:3816:5
-2147483648 * 100 cannot be represented in type 'int'
CPU: 0 PID: 20433 Comm: insmod Tainted: G WC OE
Call Trace:
dump_stack+0x74/0x92
ubsan_epilogue+0x9/0x50
handle_overflow+0x8d/0xd0
__ubsan_handle_mul_overflow+0xe/0x10
nl80211_send_iface+0x688/0x6b0 [cfg80211]
[...]
cfg80211_register_wdev+0x78/0xb0 [cfg80211]
cfg80211_netdev_notifier_call+0x200/0x620 [cfg80211]
[...]
ieee80211_if_add+0x60e/0x8f0 [mac80211]
ieee80211_register_hw+0xda5/0x1170 [mac80211]
In this case, simply return an error instead, to indicate
that no data is available. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/lbr: Filter vsyscall addresses
We found that a panic can occur when a vsyscall is made while LBR sampling
is active. If the vsyscall is interrupted (NMI) for perf sampling, this
call sequence can occur (most recent at top):
__insn_get_emulate_prefix()
insn_get_emulate_prefix()
insn_get_prefixes()
insn_get_opcode()
decode_branch_type()
get_branch_type()
intel_pmu_lbr_filter()
intel_pmu_handle_irq()
perf_event_nmi_handler()
Within __insn_get_emulate_prefix() at frame 0, a macro is called:
peek_nbyte_next(insn_byte_t, insn, i)
Within this macro, this dereference occurs:
(insn)->next_byte
Inspecting registers at this point, the value of the next_byte field is the
address of the vsyscall made, for example the location of the vsyscall
version of gettimeofday() at 0xffffffffff600000. The access to an address
in the vsyscall region will trigger an oops due to an unhandled page fault.
To fix the bug, filtering for vsyscalls can be done when
determining the branch type. This patch will return
a "none" branch if a kernel address if found to lie in the
vsyscall region. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/core: Prevent rescheduling when interrupts are disabled
David reported a warning observed while loop testing kexec jump:
Interrupts enabled after irqrouter_resume+0x0/0x50
WARNING: CPU: 0 PID: 560 at drivers/base/syscore.c:103 syscore_resume+0x18a/0x220
kernel_kexec+0xf6/0x180
__do_sys_reboot+0x206/0x250
do_syscall_64+0x95/0x180
The corresponding interrupt flag trace:
hardirqs last enabled at (15573): [<ffffffffa8281b8e>] __up_console_sem+0x7e/0x90
hardirqs last disabled at (15580): [<ffffffffa8281b73>] __up_console_sem+0x63/0x90
That means __up_console_sem() was invoked with interrupts enabled. Further
instrumentation revealed that in the interrupt disabled section of kexec
jump one of the syscore_suspend() callbacks woke up a task, which set the
NEED_RESCHED flag. A later callback in the resume path invoked
cond_resched() which in turn led to the invocation of the scheduler:
__cond_resched+0x21/0x60
down_timeout+0x18/0x60
acpi_os_wait_semaphore+0x4c/0x80
acpi_ut_acquire_mutex+0x3d/0x100
acpi_ns_get_node+0x27/0x60
acpi_ns_evaluate+0x1cb/0x2d0
acpi_rs_set_srs_method_data+0x156/0x190
acpi_pci_link_set+0x11c/0x290
irqrouter_resume+0x54/0x60
syscore_resume+0x6a/0x200
kernel_kexec+0x145/0x1c0
__do_sys_reboot+0xeb/0x240
do_syscall_64+0x95/0x180
This is a long standing problem, which probably got more visible with
the recent printk changes. Something does a task wakeup and the
scheduler sets the NEED_RESCHED flag. cond_resched() sees it set and
invokes schedule() from a completely bogus context. The scheduler
enables interrupts after context switching, which causes the above
warning at the end.
Quite some of the code paths in syscore_suspend()/resume() can result in
triggering a wakeup with the exactly same consequences. They might not
have done so yet, but as they share a lot of code with normal operations
it's just a question of time.
The problem only affects the PREEMPT_NONE and PREEMPT_VOLUNTARY scheduling
models. Full preemption is not affected as cond_resched() is disabled and
the preemption check preemptible() takes the interrupt disabled flag into
account.
Cure the problem by adding a corresponding check into cond_resched(). |
| In the Linux kernel, the following vulnerability has been resolved:
tomoyo: don't emit warning in tomoyo_write_control()
syzbot is reporting too large allocation warning at tomoyo_write_control(),
for one can write a very very long line without new line character. To fix
this warning, I use __GFP_NOWARN rather than checking for KMALLOC_MAX_SIZE,
for practically a valid line should be always shorter than 32KB where the
"too small to fail" memory-allocation rule applies.
One might try to write a valid line that is longer than 32KB, but such
request will likely fail with -ENOMEM. Therefore, I feel that separately
returning -EINVAL when a line is longer than KMALLOC_MAX_SIZE is redundant.
There is no need to distinguish over-32KB and over-KMALLOC_MAX_SIZE. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: handle a symlink read error correctly
Patch series "Convert ocfs2 to use folios".
Mark did a conversion of ocfs2 to use folios and sent it to me as a
giant patch for review ;-)
So I've redone it as individual patches, and credited Mark for the patches
where his code is substantially the same. It's not a bad way to do it;
his patch had some bugs and my patches had some bugs. Hopefully all our
bugs were different from each other. And hopefully Mark likes all the
changes I made to his code!
This patch (of 23):
If we can't read the buffer, be sure to unlock the page before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: do proper folio cleanup when cow_file_range() failed
[BUG]
When testing with COW fixup marked as BUG_ON() (this is involved with the
new pin_user_pages*() change, which should not result new out-of-band
dirty pages), I hit a crash triggered by the BUG_ON() from hitting COW
fixup path.
This BUG_ON() happens just after a failed btrfs_run_delalloc_range():
BTRFS error (device dm-2): failed to run delalloc range, root 348 ino 405 folio 65536 submit_bitmap 6-15 start 90112 len 106496: -28
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:1444!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
CPU: 0 UID: 0 PID: 434621 Comm: kworker/u24:8 Tainted: G OE 6.12.0-rc7-custom+ #86
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : extent_writepage_io+0x2d4/0x308 [btrfs]
lr : extent_writepage_io+0x2d4/0x308 [btrfs]
Call trace:
extent_writepage_io+0x2d4/0x308 [btrfs]
extent_writepage+0x218/0x330 [btrfs]
extent_write_cache_pages+0x1d4/0x4b0 [btrfs]
btrfs_writepages+0x94/0x150 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x88/0xc8
start_delalloc_inodes+0x180/0x3b0 [btrfs]
btrfs_start_delalloc_roots+0x174/0x280 [btrfs]
shrink_delalloc+0x114/0x280 [btrfs]
flush_space+0x250/0x2f8 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x164/0x408
worker_thread+0x25c/0x388
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: aa1403e1 9402f3ef aa1403e0 9402f36f (d4210000)
---[ end trace 0000000000000000 ]---
[CAUSE]
That failure is mostly from cow_file_range(), where we can hit -ENOSPC.
Although the -ENOSPC is already a bug related to our space reservation
code, let's just focus on the error handling.
For example, we have the following dirty range [0, 64K) of an inode,
with 4K sector size and 4K page size:
0 16K 32K 48K 64K
|///////////////////////////////////////|
|#######################################|
Where |///| means page are still dirty, and |###| means the extent io
tree has EXTENT_DELALLOC flag.
- Enter extent_writepage() for page 0
- Enter btrfs_run_delalloc_range() for range [0, 64K)
- Enter cow_file_range() for range [0, 64K)
- Function btrfs_reserve_extent() only reserved one 16K extent
So we created extent map and ordered extent for range [0, 16K)
0 16K 32K 48K 64K
|////////|//////////////////////////////|
|<- OE ->|##############################|
And range [0, 16K) has its delalloc flag cleared.
But since we haven't yet submit any bio, involved 4 pages are still
dirty.
- Function btrfs_reserve_extent() returns with -ENOSPC
Now we have to run error cleanup, which will clear all
EXTENT_DELALLOC* flags and clear the dirty flags for the remaining
ranges:
0 16K 32K 48K 64K
|////////| |
| | |
Note that range [0, 16K) still has its pages dirty.
- Some time later, writeback is triggered again for the range [0, 16K)
since the page range still has dirty flags.
- btrfs_run_delalloc_range() will do nothing because there is no
EXTENT_DELALLOC flag.
- extent_writepage_io() finds page 0 has no ordered flag
Which falls into the COW fixup path, triggering the BUG_ON().
Unfortunately this error handling bug dates back to the introduction of
btrfs. Thankfully with the abuse of COW fixup, at least it won't crash
the kernel.
[FIX]
Instead of immediately unlocking the extent and folios, we keep the extent
and folios locked until either erroring out or the whole delalloc range
finished.
When the whole delalloc range finished without error, we just unlock the
whole range with PAGE_SET_ORDERED (and PAGE_UNLOCK for !keep_locked
cases)
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: do proper folio cleanup when run_delalloc_nocow() failed
[BUG]
With CONFIG_DEBUG_VM set, test case generic/476 has some chance to crash
with the following VM_BUG_ON_FOLIO():
BTRFS error (device dm-3): cow_file_range failed, start 1146880 end 1253375 len 106496 ret -28
BTRFS error (device dm-3): run_delalloc_nocow failed, start 1146880 end 1253375 len 106496 ret -28
page: refcount:4 mapcount:0 mapping:00000000592787cc index:0x12 pfn:0x10664
aops:btrfs_aops [btrfs] ino:101 dentry name(?):"f1774"
flags: 0x2fffff80004028(uptodate|lru|private|node=0|zone=2|lastcpupid=0xfffff)
page dumped because: VM_BUG_ON_FOLIO(!folio_test_locked(folio))
------------[ cut here ]------------
kernel BUG at mm/page-writeback.c:2992!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
CPU: 2 UID: 0 PID: 3943513 Comm: kworker/u24:15 Tainted: G OE 6.12.0-rc7-custom+ #87
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : folio_clear_dirty_for_io+0x128/0x258
lr : folio_clear_dirty_for_io+0x128/0x258
Call trace:
folio_clear_dirty_for_io+0x128/0x258
btrfs_folio_clamp_clear_dirty+0x80/0xd0 [btrfs]
__process_folios_contig+0x154/0x268 [btrfs]
extent_clear_unlock_delalloc+0x5c/0x80 [btrfs]
run_delalloc_nocow+0x5f8/0x760 [btrfs]
btrfs_run_delalloc_range+0xa8/0x220 [btrfs]
writepage_delalloc+0x230/0x4c8 [btrfs]
extent_writepage+0xb8/0x358 [btrfs]
extent_write_cache_pages+0x21c/0x4e8 [btrfs]
btrfs_writepages+0x94/0x150 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x88/0xc8
start_delalloc_inodes+0x178/0x3a8 [btrfs]
btrfs_start_delalloc_roots+0x174/0x280 [btrfs]
shrink_delalloc+0x114/0x280 [btrfs]
flush_space+0x250/0x2f8 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x164/0x408
worker_thread+0x25c/0x388
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: 910a8021 a90363f7 a9046bf9 94012379 (d4210000)
---[ end trace 0000000000000000 ]---
[CAUSE]
The first two lines of extra debug messages show the problem is caused
by the error handling of run_delalloc_nocow().
E.g. we have the following dirtied range (4K blocksize 4K page size):
0 16K 32K
|//////////////////////////////////////|
| Pre-allocated |
And the range [0, 16K) has a preallocated extent.
- Enter run_delalloc_nocow() for range [0, 16K)
Which found range [0, 16K) is preallocated, can do the proper NOCOW
write.
- Enter fallback_to_fow() for range [16K, 32K)
Since the range [16K, 32K) is not backed by preallocated extent, we
have to go COW.
- cow_file_range() failed for range [16K, 32K)
So cow_file_range() will do the clean up by clearing folio dirty,
unlock the folios.
Now the folios in range [16K, 32K) is unlocked.
- Enter extent_clear_unlock_delalloc() from run_delalloc_nocow()
Which is called with PAGE_START_WRITEBACK to start page writeback.
But folios can only be marked writeback when it's properly locked,
thus this triggered the VM_BUG_ON_FOLIO().
Furthermore there is another hidden but common bug that
run_delalloc_nocow() is not clearing the folio dirty flags in its error
handling path.
This is the common bug shared between run_delalloc_nocow() and
cow_file_range().
[FIX]
- Clear folio dirty for range [@start, @cur_offset)
Introduce a helper, cleanup_dirty_folios(), which
will find and lock the folio in the range, clear the dirty flag and
start/end the writeback, with the extra handling for the
@locked_folio.
- Introduce a helper to clear folio dirty, start and end writeback
- Introduce a helper to record the last failed COW range end
This is to trace which range we should skip, to avoid double
unlocking.
- Skip the failed COW range for the e
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mac802154: check local interfaces before deleting sdata list
syzkaller reported a corrupted list in ieee802154_if_remove. [1]
Remove an IEEE 802.15.4 network interface after unregister an IEEE 802.15.4
hardware device from the system.
CPU0 CPU1
==== ====
genl_family_rcv_msg_doit ieee802154_unregister_hw
ieee802154_del_iface ieee802154_remove_interfaces
rdev_del_virtual_intf_deprecated list_del(&sdata->list)
ieee802154_if_remove
list_del_rcu
The net device has been unregistered, since the rcu grace period,
unregistration must be run before ieee802154_if_remove.
To avoid this issue, add a check for local->interfaces before deleting
sdata list.
[1]
kernel BUG at lib/list_debug.c:58!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 6277 Comm: syz-executor157 Not tainted 6.12.0-rc6-syzkaller-00005-g557329bcecc2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:__list_del_entry_valid_or_report+0xf4/0x140 lib/list_debug.c:56
Code: e8 a1 7e 00 07 90 0f 0b 48 c7 c7 e0 37 60 8c 4c 89 fe e8 8f 7e 00 07 90 0f 0b 48 c7 c7 40 38 60 8c 4c 89 fe e8 7d 7e 00 07 90 <0f> 0b 48 c7 c7 a0 38 60 8c 4c 89 fe e8 6b 7e 00 07 90 0f 0b 48 c7
RSP: 0018:ffffc9000490f3d0 EFLAGS: 00010246
RAX: 000000000000004e RBX: dead000000000122 RCX: d211eee56bb28d00
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88805b278dd8 R08: ffffffff8174a12c R09: 1ffffffff2852f0d
R10: dffffc0000000000 R11: fffffbfff2852f0e R12: dffffc0000000000
R13: dffffc0000000000 R14: dead000000000100 R15: ffff88805b278cc0
FS: 0000555572f94380(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056262e4a3000 CR3: 0000000078496000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__list_del_entry_valid include/linux/list.h:124 [inline]
__list_del_entry include/linux/list.h:215 [inline]
list_del_rcu include/linux/rculist.h:157 [inline]
ieee802154_if_remove+0x86/0x1e0 net/mac802154/iface.c:687
rdev_del_virtual_intf_deprecated net/ieee802154/rdev-ops.h:24 [inline]
ieee802154_del_iface+0x2c0/0x5c0 net/ieee802154/nl-phy.c:323
genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0xb14/0xec0 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2551
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1331 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1357
netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1901
sock_sendmsg_nosec net/socket.c:729 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:744
____sys_sendmsg+0x52a/0x7e0 net/socket.c:2607
___sys_sendmsg net/socket.c:2661 [inline]
__sys_sendmsg+0x292/0x380 net/socket.c:2690
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
fs: relax assertions on failure to encode file handles
Encoding file handles is usually performed by a filesystem >encode_fh()
method that may fail for various reasons.
The legacy users of exportfs_encode_fh(), namely, nfsd and
name_to_handle_at(2) syscall are ready to cope with the possibility
of failure to encode a file handle.
There are a few other users of exportfs_encode_{fh,fid}() that
currently have a WARN_ON() assertion when ->encode_fh() fails.
Relax those assertions because they are wrong.
The second linked bug report states commit 16aac5ad1fa9 ("ovl: support
encoding non-decodable file handles") in v6.6 as the regressing commit,
but this is not accurate.
The aforementioned commit only increases the chances of the assertion
and allows triggering the assertion with the reproducer using overlayfs,
inotify and drop_caches.
Triggering this assertion was always possible with other filesystems and
other reasons of ->encode_fh() failures and more particularly, it was
also possible with the exact same reproducer using overlayfs that is
mounted with options index=on,nfs_export=on also on kernels < v6.6.
Therefore, I am not listing the aforementioned commit as a Fixes commit.
Backport hint: this patch will have a trivial conflict applying to
v6.6.y, and other trivial conflicts applying to stable kernels < v6.6. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix mbss changed flags corruption on 32 bit systems
On 32-bit systems, the size of an unsigned long is 4 bytes,
while a u64 is 8 bytes. Therefore, when using
or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE),
the code is incorrectly searching for a bit in a 32-bit
variable that is expected to be 64 bits in size,
leading to incorrect bit finding.
Solution: Ensure that the size of the bits variable is correctly
adjusted for each architecture.
Call Trace:
? show_regs+0x54/0x58
? __warn+0x6b/0xd4
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? report_bug+0x113/0x150
? exc_overflow+0x30/0x30
? handle_bug+0x27/0x44
? exc_invalid_op+0x18/0x50
? handle_exception+0xf6/0xf6
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? ieee80211_mesh_work+0xff/0x260 [mac80211]
? cfg80211_wiphy_work+0x72/0x98 [cfg80211]
? process_one_work+0xf1/0x1fc
? worker_thread+0x2c0/0x3b4
? kthread+0xc7/0xf0
? mod_delayed_work_on+0x4c/0x4c
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork+0x24/0x38
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork_asm+0xf/0x14
? entry_INT80_32+0xf0/0xf0
[restore no-op path for no changes] |