| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
serial: liteuart: fix minor-number leak on probe errors
Make sure to release the allocated minor number before returning on
probe errors. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix leak of rcvhdrtail_dummy_kvaddr
This buffer is currently allocated in hfi1_init():
if (reinit)
ret = init_after_reset(dd);
else
ret = loadtime_init(dd);
if (ret)
goto done;
/* allocate dummy tail memory for all receive contexts */
dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
sizeof(u64),
&dd->rcvhdrtail_dummy_dma,
GFP_KERNEL);
if (!dd->rcvhdrtail_dummy_kvaddr) {
dd_dev_err(dd, "cannot allocate dummy tail memory\n");
ret = -ENOMEM;
goto done;
}
The reinit triggered path will overwrite the old allocation and leak it.
Fix by moving the allocation to hfi1_alloc_devdata() and the deallocation
to hfi1_free_devdata(). |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: dt9812: fix DMA buffers on stack
USB transfer buffers are typically mapped for DMA and must not be
allocated on the stack or transfers will fail.
Allocate proper transfer buffers in the various command helpers and
return an error on short transfers instead of acting on random stack
data.
Note that this also fixes a stack info leak on systems where DMA is not
used as 32 bytes are always sent to the device regardless of how short
the command is. |
| In the Linux kernel, the following vulnerability has been resolved:
virt: tdx-guest: Just leak decrypted memory on unrecoverable errors
In CoCo VMs it is possible for the untrusted host to cause
set_memory_decrypted() to fail such that an error is returned
and the resulting memory is shared. Callers need to take care
to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional
or security issues.
Leak the decrypted memory when set_memory_decrypted() fails,
and don't need to print an error since set_memory_decrypted()
will call WARN_ONCE(). |
| In the Linux kernel, the following vulnerability has been resolved:
tls: get psock ref after taking rxlock to avoid leak
At the start of tls_sw_recvmsg, we take a reference on the psock, and
then call tls_rx_reader_lock. If that fails, we return directly
without releasing the reference.
Instead of adding a new label, just take the reference after locking
has succeeded, since we don't need it before. |
| A vulnerability has been found in D-Link DIR-823X 240126/240802 and classified as critical. Affected by this vulnerability is the function FUN_00412244. The manipulation leads to null pointer dereference. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |
| gnark is a zero-knowledge proof system framework. In version 0.12.0, there is a potential denial of service vulnerability when computing scalar multiplication is using the fake-GLV algorithm. This is because the algorithm didn't converge quickly enough for some of the inputs. This issue has been patched in version 0.13.0. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ptdma: Fix the error handling path in pt_core_init()
In order to free resources correctly in the error handling path of
pt_core_init(), 2 goto's have to be switched. Otherwise, some resources
will leak and we will try to release things that have not been allocated
yet.
Also move a dev_err() to a place where it is more meaningful. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: parsers: qcom: Fix missing free for pparts in cleanup
Mtdpart doesn't free pparts when a cleanup function is declared.
Add missing free for pparts in cleanup function for smem to fix the
leak. |
| A vulnerability was found in axboe fio up to 3.41. This affects the function str_buffer_pattern_cb of the file options.c. Performing manipulation results in null pointer dereference. The attack must be initiated from a local position. The exploit has been made public and could be used. |
| In lj_str_hash.c in OpenResty 1.19.3.1 through 1.25.3.1, the string hashing function (used during string interning) allows HashDoS (Hash Denial of Service) attacks. An attacker could cause excessive resource usage during proxy operations via crafted requests, potentially leading to a denial of service with relatively few incoming requests. This vulnerability only exists in the OpenResty fork in the openresty/luajit2 GitHub repository. The LuaJIT/LuaJIT repository. is unaffected. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Avoid crash from unnecessary IDA free
In the remove path, there is an attempt to free the aux_idx IDA whether
it was allocated or not. This can potentially cause a crash when
unloading the driver on systems that do not initialize support for RDMA.
But, this free cannot be gated by the status bit for RDMA, since it is
allocated if the driver detects support for RDMA at probe time, but the
driver can enter into a state where RDMA is not supported after the IDA
has been allocated at probe time and this would lead to a memory leak.
Initialize aux_idx to an invalid value and check for a valid value when
unloading to determine if an IDA free is necessary. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: wmi: Fix opening of char device
Since commit fa1f68db6ca7 ("drivers: misc: pass miscdevice pointer via
file private data"), the miscdevice stores a pointer to itself inside
filp->private_data, which means that private_data will not be NULL when
wmi_char_open() is called. This might cause memory corruption should
wmi_char_open() be unable to find its driver, something which can
happen when the associated WMI device is deleted in wmi_free_devices().
Fix the problem by using the miscdevice pointer to retrieve the WMI
device data associated with a char device using container_of(). This
also avoids wmi_char_open() picking a wrong WMI device bound to a
driver with the same name as the original driver. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix gart.bo pin_count leak
gmc_v{9,10}_0_gart_disable() isn't called matched with
correspoding gart_enbale function in SRIOV case. This will
lead to gart.bo pin_count leak on driver unload. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: acpi: fix resource leak in reconfiguration device addition
acpi_i2c_find_adapter_by_handle() calls bus_find_device() which takes a
reference on the adapter which is never released which will result in a
reference count leak and render the adapter unremovable. Make sure to
put the adapter after creating the client in the same manner that we do
for OF.
[wsa: fixed title] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix listener leak in rdma_cma_listen_on_all() failure
If cma_listen_on_all() fails it leaves the per-device ID still on the
listen_list but the state is not set to RDMA_CM_ADDR_BOUND.
When the cmid is eventually destroyed cma_cancel_listens() is not called
due to the wrong state, however the per-device IDs are still holding the
refcount preventing the ID from being destroyed, thus deadlocking:
task:rping state:D stack: 0 pid:19605 ppid: 47036 flags:0x00000084
Call Trace:
__schedule+0x29a/0x780
? free_unref_page_commit+0x9b/0x110
schedule+0x3c/0xa0
schedule_timeout+0x215/0x2b0
? __flush_work+0x19e/0x1e0
wait_for_completion+0x8d/0xf0
_destroy_id+0x144/0x210 [rdma_cm]
ucma_close_id+0x2b/0x40 [rdma_ucm]
__destroy_id+0x93/0x2c0 [rdma_ucm]
? __xa_erase+0x4a/0xa0
ucma_destroy_id+0x9a/0x120 [rdma_ucm]
ucma_write+0xb8/0x130 [rdma_ucm]
vfs_write+0xb4/0x250
ksys_write+0xb5/0xd0
? syscall_trace_enter.isra.19+0x123/0x190
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Ensure that cma_listen_on_all() atomically unwinds its action under the
lock during error. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: fix access to invalid resource for the second interface
imon driver probes two USB interfaces, and at the probe of the second
interface, the driver assumes blindly that the first interface got
bound with the same imon driver. It's usually true, but it's still
possible that the first interface is bound with another driver via a
malformed descriptor. Then it may lead to a memory corruption, as
spotted by syzkaller; imon driver accesses the data from drvdata as
struct imon_context object although it's a completely different one
that was assigned by another driver.
This patch adds a sanity check -- whether the first interface is
really bound with the imon driver or not -- for avoiding the problem
above at the probe time. |
| Sysax Multi Server 6.99 is vulnerable to a denial of service (DoS) condition when processing specially crafted SSH packets. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Restore allocated resources on failed copyout
Fix a resource leak if an error occurs. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdio: fix possible resource leaks in some error paths
If sdio_add_func() or sdio_init_func() fails, sdio_remove_func() can
not release the resources, because the sdio function is not presented
in these two cases, it won't call of_node_put() or put_device().
To fix these leaks, make sdio_func_present() only control whether
device_del() needs to be called or not, then always call of_node_put()
and put_device().
In error case in sdio_init_func(), the reference of 'card->dev' is
not get, to avoid redundant put in sdio_free_func_cis(), move the
get_device() to sdio_alloc_func() and put_device() to sdio_release_func(),
it can keep the get/put function be balanced.
Without this patch, while doing fault inject test, it can get the
following leak reports, after this fix, the leak is gone.
unreferenced object 0xffff888112514000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741614 (age 124.774s)
hex dump (first 32 bytes):
00 e0 6f 12 81 88 ff ff 60 58 8d 06 81 88 ff ff ..o.....`X......
10 40 51 12 81 88 ff ff 10 40 51 12 81 88 ff ff .@Q......@Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<000000002f839ccb>] mmc_alloc_card+0x38/0xb0 [mmc_core]
[<0000000004adcbf6>] mmc_sdio_init_card+0xde/0x170 [mmc_core]
[<000000007538fea0>] mmc_attach_sdio+0xcb/0x1b0 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core]
unreferenced object 0xffff888112511000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741623 (age 124.766s)
hex dump (first 32 bytes):
00 40 51 12 81 88 ff ff e0 58 8d 06 81 88 ff ff .@Q......X......
10 10 51 12 81 88 ff ff 10 10 51 12 81 88 ff ff ..Q.......Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<00000000fcbe706c>] sdio_alloc_func+0x35/0x100 [mmc_core]
[<00000000c68f4b50>] mmc_attach_sdio.cold.18+0xb1/0x395 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core] |