| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Fix epfile null pointer access after ep enable.
A race condition occurs when ffs_func_eps_enable() runs concurrently
with ffs_data_reset(). The ffs_data_clear() called in ffs_data_reset()
sets ffs->epfiles to NULL before resetting ffs->eps_count to 0, leading
to a NULL pointer dereference when accessing epfile->ep in
ffs_func_eps_enable() after successful usb_ep_enable().
The ffs->epfiles pointer is set to NULL in both ffs_data_clear() and
ffs_data_close() functions, and its modification is protected by the
spinlock ffs->eps_lock. And the whole ffs_func_eps_enable() function
is also protected by ffs->eps_lock.
Thus, add NULL pointer handling for ffs->epfiles in the
ffs_func_eps_enable() function to fix issues |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Verify inode mode when loading from disk
The inode mode loaded from corrupted disk can be invalid. Do like what
commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk")
does. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: bcsp: receive data only if registered
Currently, bcsp_recv() can be called even when the BCSP protocol has not
been registered. This leads to a NULL pointer dereference, as shown in
the following stack trace:
KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f]
RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590
Call Trace:
<TASK>
hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627
tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290
tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
To prevent this, ensure that the HCI_UART_REGISTERED flag is set before
processing received data. If the protocol is not registered, return
-EUNATCH. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds
Add bounds checking to prevent writes past framebuffer boundaries when
rendering text near screen edges. Return early if the Y position is off-screen
and clip image height to screen boundary. Break from the rendering loop if the
X position is off-screen. When clipping image width to fit the screen, update
the character count to match the clipped width to prevent buffer size
mismatches.
Without the character count update, bit_putcs_aligned and bit_putcs_unaligned
receive mismatched parameters where the buffer is allocated for the clipped
width but cnt reflects the original larger count, causing out-of-bounds writes. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: ensure no dirty metadata is written back for an fs with errors
[BUG]
During development of a minor feature (make sure all btrfs_bio::end_io()
is called in task context), I noticed a crash in generic/388, where
metadata writes triggered new works after btrfs_stop_all_workers().
It turns out that it can even happen without any code modification, just
using RAID5 for metadata and the same workload from generic/388 is going
to trigger the use-after-free.
[CAUSE]
If btrfs hits an error, the fs is marked as error, no new
transaction is allowed thus metadata is in a frozen state.
But there are some metadata modifications before that error, and they are
still in the btree inode page cache.
Since there will be no real transaction commit, all those dirty folios
are just kept as is in the page cache, and they can not be invalidated
by invalidate_inode_pages2() call inside close_ctree(), because they are
dirty.
And finally after btrfs_stop_all_workers(), we call iput() on btree
inode, which triggers writeback of those dirty metadata.
And if the fs is using RAID56 metadata, this will trigger RMW and queue
new works into rmw_workers, which is already stopped, causing warning
from queue_work() and use-after-free.
[FIX]
Add a special handling for write_one_eb(), that if the fs is already in
an error state, immediately mark the bbio as failure, instead of really
submitting them.
Then during close_ctree(), iput() will just discard all those dirty
tree blocks without really writing them back, thus no more new jobs for
already stopped-and-freed workqueues.
The extra discard in write_one_eb() also acts as an extra safenet.
E.g. the transaction abort is triggered by some extent/free space
tree corruptions, and since extent/free space tree is already corrupted
some tree blocks may be allocated where they shouldn't be (overwriting
existing tree blocks). In that case writing them back will further
corrupting the fs. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ] |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: fix uaf in proc_readdir_de()
Pde is erased from subdir rbtree through rb_erase(), but not set the node
to EMPTY, which may result in uaf access. We should use RB_CLEAR_NODE()
set the erased node to EMPTY, then pde_subdir_next() will return NULL to
avoid uaf access.
We found an uaf issue while using stress-ng testing, need to run testcase
getdent and tun in the same time. The steps of the issue is as follows:
1) use getdent to traverse dir /proc/pid/net/dev_snmp6/, and current
pde is tun3;
2) in the [time windows] unregister netdevice tun3 and tun2, and erase
them from rbtree. erase tun3 first, and then erase tun2. the
pde(tun2) will be released to slab;
3) continue to getdent process, then pde_subdir_next() will return
pde(tun2) which is released, it will case uaf access.
CPU 0 | CPU 1
-------------------------------------------------------------------------
traverse dir /proc/pid/net/dev_snmp6/ | unregister_netdevice(tun->dev) //tun3 tun2
sys_getdents64() |
iterate_dir() |
proc_readdir() |
proc_readdir_de() | snmp6_unregister_dev()
pde_get(de); | proc_remove()
read_unlock(&proc_subdir_lock); | remove_proc_subtree()
| write_lock(&proc_subdir_lock);
[time window] | rb_erase(&root->subdir_node, &parent->subdir);
| write_unlock(&proc_subdir_lock);
read_lock(&proc_subdir_lock); |
next = pde_subdir_next(de); |
pde_put(de); |
de = next; //UAF |
rbtree of dev_snmp6
|
pde(tun3)
/ \
NULL pde(tun2) |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: client: fix memory leak in smb3_fs_context_parse_param
The user calls fsconfig twice, but when the program exits, free() only
frees ctx->source for the second fsconfig, not the first.
Regarding fc->source, there is no code in the fs context related to its
memory reclamation.
To fix this memory leak, release the source memory corresponding to ctx
or fc before each parsing.
syzbot reported:
BUG: memory leak
unreferenced object 0xffff888128afa360 (size 96):
backtrace (crc 79c9c7ba):
kstrdup+0x3c/0x80 mm/util.c:84
smb3_fs_context_parse_param+0x229b/0x36c0 fs/smb/client/fs_context.c:1444
BUG: memory leak
unreferenced object 0xffff888112c7d900 (size 96):
backtrace (crc 79c9c7ba):
smb3_fs_context_fullpath+0x70/0x1b0 fs/smb/client/fs_context.c:629
smb3_fs_context_parse_param+0x2266/0x36c0 fs/smb/client/fs_context.c:1438 |
| In the Linux kernel, the following vulnerability has been resolved:
nios2: ensure that memblock.current_limit is set when setting pfn limits
On nios2, with CONFIG_FLATMEM set, the kernel relies on
memblock_get_current_limit() to determine the limits of mem_map, in
particular for max_low_pfn.
Unfortunately, memblock.current_limit is only default initialized to
MEMBLOCK_ALLOC_ANYWHERE at this point of the bootup, potentially leading
to situations where max_low_pfn can erroneously exceed the value of
max_pfn and, thus, the valid range of available DRAM.
This can in turn cause kernel-level paging failures, e.g.:
[ 76.900000] Unable to handle kernel paging request at virtual address 20303000
[ 76.900000] ea = c0080890, ra = c000462c, cause = 14
[ 76.900000] Kernel panic - not syncing: Oops
[ 76.900000] ---[ end Kernel panic - not syncing: Oops ]---
This patch fixes this by pre-calculating memblock.current_limit
based on the upper limits of the available memory ranges via
adjust_lowmem_bounds, a simplified version of the equivalent
implementation within the arm architecture. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix KMSAN uninit-value issue in __hfsplus_ext_cache_extent()
The syzbot reported issue in __hfsplus_ext_cache_extent():
[ 70.194323][ T9350] BUG: KMSAN: uninit-value in __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195022][ T9350] __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195530][ T9350] hfsplus_file_extend+0x74f/0x1cf0
[ 70.195998][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.196458][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.196959][ T9350] cont_write_begin+0x1000/0x1950
[ 70.197416][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.197873][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.198374][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.198892][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.199393][ T9350] vfs_write+0xb0f/0x14e0
[ 70.199771][ T9350] ksys_write+0x23e/0x490
[ 70.200149][ T9350] __x64_sys_write+0x97/0xf0
[ 70.200570][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.201065][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.201506][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.202054][ T9350]
[ 70.202279][ T9350] Uninit was created at:
[ 70.202693][ T9350] __kmalloc_noprof+0x621/0xf80
[ 70.203149][ T9350] hfsplus_find_init+0x8d/0x1d0
[ 70.203602][ T9350] hfsplus_file_extend+0x6ca/0x1cf0
[ 70.204087][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.204561][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.205074][ T9350] cont_write_begin+0x1000/0x1950
[ 70.205547][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.206017][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.206519][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.207042][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.207552][ T9350] vfs_write+0xb0f/0x14e0
[ 70.207961][ T9350] ksys_write+0x23e/0x490
[ 70.208375][ T9350] __x64_sys_write+0x97/0xf0
[ 70.208810][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.209255][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.209680][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.210230][ T9350]
[ 70.210454][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Not tainted 6.12.0-rc5 #5
[ 70.211174][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.212115][ T9350] =====================================================
[ 70.212734][ T9350] Disabling lock debugging due to kernel taint
[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic set ...
[ 70.213858][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Tainted: G B 6.12.0-rc5 #5
[ 70.214679][ T9350] Tainted: [B]=BAD_PAGE
[ 70.215057][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.215999][ T9350] Call Trace:
[ 70.216309][ T9350] <TASK>
[ 70.216585][ T9350] dump_stack_lvl+0x1fd/0x2b0
[ 70.217025][ T9350] dump_stack+0x1e/0x30
[ 70.217421][ T9350] panic+0x502/0xca0
[ 70.217803][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
[ 70.218294][ Message fromT sy9350] kmsan_report+0x296/slogd@syzkaller 0x2aat Aug 18 22:11:058 ...
kernel
:[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic [ 70.220179][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
set ...
[ 70.221254][ T9350] ? __msan_warning+0x96/0x120
[ 70.222066][ T9350] ? __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.223023][ T9350] ? hfsplus_file_extend+0x74f/0x1cf0
[ 70.224120][ T9350] ? hfsplus_get_block+0xe16/0x17b0
[ 70.224946][ T9350] ? __block_write_begin_int+0x962/0x2ce0
[ 70.225756][ T9350] ? cont_write_begin+0x1000/0x1950
[ 70.226337][ T9350] ? hfsplus_write_begin+0x85/0x130
[ 70.226852][ T9350] ? generic_perform_write+0x3e8/0x1060
[ 70.227405][ T9350] ? __generic_file_write_iter+0x215/0x460
[ 70.227979][ T9350] ? generic_file_write_iter+0x109/0x5e0
[ 70.228540][ T9350] ? vfs_write+0xb0f/0x14e0
[ 70.228997][ T9350] ? ksys_write+0x23e/0x490
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix KMSAN uninit-value issue in hfs_find_set_zero_bits()
The syzbot reported issue in hfs_find_set_zero_bits():
=====================================================
BUG: KMSAN: uninit-value in hfs_find_set_zero_bits+0x74d/0xb60 fs/hfs/bitmap.c:45
hfs_find_set_zero_bits+0x74d/0xb60 fs/hfs/bitmap.c:45
hfs_vbm_search_free+0x13c/0x5b0 fs/hfs/bitmap.c:151
hfs_extend_file+0x6a5/0x1b00 fs/hfs/extent.c:408
hfs_get_block+0x435/0x1150 fs/hfs/extent.c:353
__block_write_begin_int+0xa76/0x3030 fs/buffer.c:2151
block_write_begin fs/buffer.c:2262 [inline]
cont_write_begin+0x10e1/0x1bc0 fs/buffer.c:2601
hfs_write_begin+0x85/0x130 fs/hfs/inode.c:52
cont_expand_zero fs/buffer.c:2528 [inline]
cont_write_begin+0x35a/0x1bc0 fs/buffer.c:2591
hfs_write_begin+0x85/0x130 fs/hfs/inode.c:52
hfs_file_truncate+0x1d6/0xe60 fs/hfs/extent.c:494
hfs_inode_setattr+0x964/0xaa0 fs/hfs/inode.c:654
notify_change+0x1993/0x1aa0 fs/attr.c:552
do_truncate+0x28f/0x310 fs/open.c:68
do_ftruncate+0x698/0x730 fs/open.c:195
do_sys_ftruncate fs/open.c:210 [inline]
__do_sys_ftruncate fs/open.c:215 [inline]
__se_sys_ftruncate fs/open.c:213 [inline]
__x64_sys_ftruncate+0x11b/0x250 fs/open.c:213
x64_sys_call+0xfe3/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:78
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4154 [inline]
slab_alloc_node mm/slub.c:4197 [inline]
__kmalloc_cache_noprof+0x7f7/0xed0 mm/slub.c:4354
kmalloc_noprof include/linux/slab.h:905 [inline]
hfs_mdb_get+0x1cc8/0x2a90 fs/hfs/mdb.c:175
hfs_fill_super+0x3d0/0xb80 fs/hfs/super.c:337
get_tree_bdev_flags+0x6e3/0x920 fs/super.c:1681
get_tree_bdev+0x38/0x50 fs/super.c:1704
hfs_get_tree+0x35/0x40 fs/hfs/super.c:388
vfs_get_tree+0xb0/0x5c0 fs/super.c:1804
do_new_mount+0x738/0x1610 fs/namespace.c:3902
path_mount+0x6db/0x1e90 fs/namespace.c:4226
do_mount fs/namespace.c:4239 [inline]
__do_sys_mount fs/namespace.c:4450 [inline]
__se_sys_mount+0x6eb/0x7d0 fs/namespace.c:4427
__x64_sys_mount+0xe4/0x150 fs/namespace.c:4427
x64_sys_call+0xfa7/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:166
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 1 UID: 0 PID: 12609 Comm: syz.1.2692 Not tainted 6.16.0-syzkaller #0 PREEMPT(none)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
=====================================================
The HFS_SB(sb)->bitmap buffer is allocated in hfs_mdb_get():
HFS_SB(sb)->bitmap = kmalloc(8192, GFP_KERNEL);
Finally, it can trigger the reported issue because kmalloc()
doesn't clear the allocated memory. If allocated memory contains
only zeros, then everything will work pretty fine.
But if the allocated memory contains the "garbage", then
it can affect the bitmap operations and it triggers
the reported issue.
This patch simply exchanges the kmalloc() on kzalloc()
with the goal to guarantee the correctness of bitmap operations.
Because, newly created allocation bitmap should have all
available blocks free. Potentially, initialization bitmap's read
operation could not fill the whole allocated memory and
"garbage" in the not initialized memory will be the reason of
volume coruptions and file system driver bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix unlikely race in gdlm_put_lock
In gdlm_put_lock(), there is a small window of time in which the
DFL_UNMOUNT flag has been set but the lockspace hasn't been released,
yet. In that window, dlm may still call gdlm_ast() and gdlm_bast().
To prevent it from dereferencing freed glock objects, only free the
glock if the lockspace has actually been released. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "NFSD: Remove the cap on number of operations per NFSv4 COMPOUND"
I've found that pynfs COMP6 now leaves the connection or lease in a
strange state, which causes CLOSE9 to hang indefinitely. I've dug
into it a little, but I haven't been able to root-cause it yet.
However, I bisected to commit 48aab1606fa8 ("NFSD: Remove the cap on
number of operations per NFSv4 COMPOUND").
Tianshuo Han also reports a potential vulnerability when decoding
an NFSv4 COMPOUND. An attacker can place an arbitrarily large op
count in the COMPOUND header, which results in:
[ 51.410584] nfsd: vmalloc error: size 1209533382144, exceeds total
pages, mode:0xdc0(GFP_KERNEL|__GFP_ZERO),
nodemask=(null),cpuset=/,mems_allowed=0
when NFSD attempts to allocate the COMPOUND op array.
Let's restore the operation-per-COMPOUND limit, but increased to 200
for now. |
| In the Linux kernel, the following vulnerability has been resolved:
pid: Add a judgment for ns null in pid_nr_ns
__task_pid_nr_ns
ns = task_active_pid_ns(current);
pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
if (pid && ns->level <= pid->level) {
Sometimes null is returned for task_active_pid_ns. Then it will trigger kernel panic in pid_nr_ns.
For example:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058
Mem abort info:
ESR = 0x0000000096000007
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x07: level 3 translation fault
Data abort info:
ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 39-bit VAs, pgdp=00000002175aa000
[0000000000000058] pgd=08000002175ab003, p4d=08000002175ab003, pud=08000002175ab003, pmd=08000002175be003, pte=0000000000000000
pstate: 834000c5 (Nzcv daIF +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : __task_pid_nr_ns+0x74/0xd0
lr : __task_pid_nr_ns+0x24/0xd0
sp : ffffffc08001bd10
x29: ffffffc08001bd10 x28: ffffffd4422b2000 x27: 0000000000000001
x26: ffffffd442821168 x25: ffffffd442821000 x24: 00000f89492eab31
x23: 00000000000000c0 x22: ffffff806f5693c0 x21: ffffff806f5693c0
x20: 0000000000000001 x19: 0000000000000000 x18: 0000000000000000
x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 00000000023a1adc
x14: 0000000000000003 x13: 00000000007ef6d8 x12: 001167c391c78800
x11: 00ffffffffffffff x10: 0000000000000000 x9 : 0000000000000001
x8 : ffffff80816fa3c0 x7 : 0000000000000000 x6 : 49534d702d535449
x5 : ffffffc080c4c2c0 x4 : ffffffd43ee128c8 x3 : ffffffd43ee124dc
x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffffff806f5693c0
Call trace:
__task_pid_nr_ns+0x74/0xd0
...
__handle_irq_event_percpu+0xd4/0x284
handle_irq_event+0x48/0xb0
handle_fasteoi_irq+0x160/0x2d8
generic_handle_domain_irq+0x44/0x60
gic_handle_irq+0x4c/0x114
call_on_irq_stack+0x3c/0x74
do_interrupt_handler+0x4c/0x84
el1_interrupt+0x34/0x58
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x68/0x6c
account_kernel_stack+0x60/0x144
exit_task_stack_account+0x1c/0x80
do_exit+0x7e4/0xaf8
...
get_signal+0x7bc/0x8d8
do_notify_resume+0x128/0x828
el0_svc+0x6c/0x70
el0t_64_sync_handler+0x68/0xbc
el0t_64_sync+0x1a8/0x1ac
Code: 35fffe54 911a02a8 f9400108 b4000128 (b9405a69)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception in interrupt |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: detect invalid INLINE_DATA + EXTENTS flag combination
syzbot reported a BUG_ON in ext4_es_cache_extent() when opening a verity
file on a corrupted ext4 filesystem mounted without a journal.
The issue is that the filesystem has an inode with both the INLINE_DATA
and EXTENTS flags set:
EXT4-fs error (device loop0): ext4_cache_extents:545: inode #15:
comm syz.0.17: corrupted extent tree: lblk 0 < prev 66
Investigation revealed that the inode has both flags set:
DEBUG: inode 15 - flag=1, i_inline_off=164, has_inline=1, extents_flag=1
This is an invalid combination since an inode should have either:
- INLINE_DATA: data stored directly in the inode
- EXTENTS: data stored in extent-mapped blocks
Having both flags causes ext4_has_inline_data() to return true, skipping
extent tree validation in __ext4_iget(). The unvalidated out-of-order
extents then trigger a BUG_ON in ext4_es_cache_extent() due to integer
underflow when calculating hole sizes.
Fix this by detecting this invalid flag combination early in ext4_iget()
and rejecting the corrupted inode. |
| In the Linux kernel, the following vulnerability has been resolved:
xen/events: Return -EEXIST for bound VIRQs
Change find_virq() to return -EEXIST when a VIRQ is bound to a
different CPU than the one passed in. With that, remove the BUG_ON()
from bind_virq_to_irq() to propogate the error upwards.
Some VIRQs are per-cpu, but others are per-domain or global. Those must
be bound to CPU0 and can then migrate elsewhere. The lookup for
per-domain and global will probably fail when migrated off CPU 0,
especially when the current CPU is tracked. This now returns -EEXIST
instead of BUG_ON().
A second call to bind a per-domain or global VIRQ is not expected, but
make it non-fatal to avoid trying to look up the irq, since we don't
know which per_cpu(virq_to_irq) it will be in. |
| In the Linux kernel, the following vulnerability has been resolved:
can: hi311x: fix null pointer dereference when resuming from sleep before interface was enabled
This issue is similar to the vulnerability in the `mcp251x` driver,
which was fixed in commit 03c427147b2d ("can: mcp251x: fix resume from
sleep before interface was brought up").
In the `hi311x` driver, when the device resumes from sleep, the driver
schedules `priv->restart_work`. However, if the network interface was
not previously enabled, the `priv->wq` (workqueue) is not allocated and
initialized, leading to a null pointer dereference.
To fix this, we move the allocation and initialization of the workqueue
from the `hi3110_open` function to the `hi3110_can_probe` function.
This ensures that the workqueue is properly initialized before it is
used during device resume. And added logic to destroy the workqueue
in the error handling paths of `hi3110_can_probe` and in the
`hi3110_can_remove` function to prevent resource leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: fix divide-by-zero in comedi_buf_munge()
The comedi_buf_munge() function performs a modulo operation
`async->munge_chan %= async->cmd.chanlist_len` without first
checking if chanlist_len is zero. If a user program submits a command with
chanlist_len set to zero, this causes a divide-by-zero error when the device
processes data in the interrupt handler path.
Add a check for zero chanlist_len at the beginning of the
function, similar to the existing checks for !map and
CMDF_RAWDATA flag. When chanlist_len is zero, update
munge_count and return early, indicating the data was
handled without munging.
This prevents potential kernel panics from malformed user commands. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: parse_dfs_referrals: prevent oob on malformed input
Malicious SMB server can send invalid reply to FSCTL_DFS_GET_REFERRALS
- reply smaller than sizeof(struct get_dfs_referral_rsp)
- reply with number of referrals smaller than NumberOfReferrals in the
header
Processing of such replies will cause oob.
Return -EINVAL error on such replies to prevent oob-s. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_strcasecmp()
The hfsplus_strcasecmp() logic can trigger the issue:
[ 117.317703][ T9855] ==================================================================
[ 117.318353][ T9855] BUG: KASAN: slab-out-of-bounds in hfsplus_strcasecmp+0x1bc/0x490
[ 117.318991][ T9855] Read of size 2 at addr ffff88802160f40c by task repro/9855
[ 117.319577][ T9855]
[ 117.319773][ T9855] CPU: 0 UID: 0 PID: 9855 Comm: repro Not tainted 6.17.0-rc6 #33 PREEMPT(full)
[ 117.319780][ T9855] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 117.319783][ T9855] Call Trace:
[ 117.319785][ T9855] <TASK>
[ 117.319788][ T9855] dump_stack_lvl+0x1c1/0x2a0
[ 117.319795][ T9855] ? __virt_addr_valid+0x1c8/0x5c0
[ 117.319803][ T9855] ? __pfx_dump_stack_lvl+0x10/0x10
[ 117.319808][ T9855] ? rcu_is_watching+0x15/0xb0
[ 117.319816][ T9855] ? lock_release+0x4b/0x3e0
[ 117.319821][ T9855] ? __kasan_check_byte+0x12/0x40
[ 117.319828][ T9855] ? __virt_addr_valid+0x1c8/0x5c0
[ 117.319835][ T9855] ? __virt_addr_valid+0x4a5/0x5c0
[ 117.319842][ T9855] print_report+0x17e/0x7e0
[ 117.319848][ T9855] ? __virt_addr_valid+0x1c8/0x5c0
[ 117.319855][ T9855] ? __virt_addr_valid+0x4a5/0x5c0
[ 117.319862][ T9855] ? __phys_addr+0xd3/0x180
[ 117.319869][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490
[ 117.319876][ T9855] kasan_report+0x147/0x180
[ 117.319882][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490
[ 117.319891][ T9855] hfsplus_strcasecmp+0x1bc/0x490
[ 117.319900][ T9855] ? __pfx_hfsplus_cat_case_cmp_key+0x10/0x10
[ 117.319906][ T9855] hfs_find_rec_by_key+0xa9/0x1e0
[ 117.319913][ T9855] __hfsplus_brec_find+0x18e/0x470
[ 117.319920][ T9855] ? __pfx_hfsplus_bnode_find+0x10/0x10
[ 117.319926][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10
[ 117.319933][ T9855] ? __pfx___hfsplus_brec_find+0x10/0x10
[ 117.319942][ T9855] hfsplus_brec_find+0x28f/0x510
[ 117.319949][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10
[ 117.319956][ T9855] ? __pfx_hfsplus_brec_find+0x10/0x10
[ 117.319963][ T9855] ? __kmalloc_noprof+0x2a9/0x510
[ 117.319969][ T9855] ? hfsplus_find_init+0x8c/0x1d0
[ 117.319976][ T9855] hfsplus_brec_read+0x2b/0x120
[ 117.319983][ T9855] hfsplus_lookup+0x2aa/0x890
[ 117.319990][ T9855] ? __pfx_hfsplus_lookup+0x10/0x10
[ 117.320003][ T9855] ? d_alloc_parallel+0x2f0/0x15e0
[ 117.320008][ T9855] ? __lock_acquire+0xaec/0xd80
[ 117.320013][ T9855] ? __pfx_d_alloc_parallel+0x10/0x10
[ 117.320019][ T9855] ? __raw_spin_lock_init+0x45/0x100
[ 117.320026][ T9855] ? __init_waitqueue_head+0xa9/0x150
[ 117.320034][ T9855] __lookup_slow+0x297/0x3d0
[ 117.320039][ T9855] ? __pfx___lookup_slow+0x10/0x10
[ 117.320045][ T9855] ? down_read+0x1ad/0x2e0
[ 117.320055][ T9855] lookup_slow+0x53/0x70
[ 117.320065][ T9855] walk_component+0x2f0/0x430
[ 117.320073][ T9855] path_lookupat+0x169/0x440
[ 117.320081][ T9855] filename_lookup+0x212/0x590
[ 117.320089][ T9855] ? __pfx_filename_lookup+0x10/0x10
[ 117.320098][ T9855] ? strncpy_from_user+0x150/0x290
[ 117.320105][ T9855] ? getname_flags+0x1e5/0x540
[ 117.320112][ T9855] user_path_at+0x3a/0x60
[ 117.320117][ T9855] __x64_sys_umount+0xee/0x160
[ 117.320123][ T9855] ? __pfx___x64_sys_umount+0x10/0x10
[ 117.320129][ T9855] ? do_syscall_64+0xb7/0x3a0
[ 117.320135][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 117.320141][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 117.320145][ T9855] do_syscall_64+0xf3/0x3a0
[ 117.320150][ T9855] ? exc_page_fault+0x9f/0xf0
[ 117.320154][ T9855] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 117.320158][ T9855] RIP: 0033:0x7f7dd7908b07
[ 117.320163][ T9855] Code: 23 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 31 f6 e9 09 00 00 00 66 0f 1f 84 00 00 08
[ 117.320167][ T9855] RSP: 002b:00007ffd5ebd9698 EFLAGS: 00000202
---truncated--- |