Filtered by vendor Linux Subscriptions
Total 12866 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-49222 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/bridge: anx7625: Fix overflow issue on reading EDID The length of EDID block can be longer than 256 bytes, so we should use `int` instead of `u8` for the `edid_pos` variable.
CVE-2024-40950 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: huge_memory: fix misused mapping_large_folio_support() for anon folios When I did a large folios split test, a WARNING "[ 5059.122759][ T166] Cannot split file folio to non-0 order" was triggered. But the test cases are only for anonmous folios. while mapping_large_folio_support() is only reasonable for page cache folios. In split_huge_page_to_list_to_order(), the folio passed to mapping_large_folio_support() maybe anonmous folio. The folio_test_anon() check is missing. So the split of the anonmous THP is failed. This is also the same for shmem_mapping(). We'd better add a check for both. But the shmem_mapping() in __split_huge_page() is not involved, as for anonmous folios, the end parameter is set to -1, so (head[i].index >= end) is always false. shmem_mapping() is not called. Also add a VM_WARN_ON_ONCE() in mapping_large_folio_support() for anon mapping, So we can detect the wrong use more easily. THP folios maybe exist in the pagecache even the file system doesn't support large folio, it is because when CONFIG_TRANSPARENT_HUGEPAGE is enabled, khugepaged will try to collapse read-only file-backed pages to THP. But the mapping does not actually support multi order large folios properly. Using /sys/kernel/debug/split_huge_pages to verify this, with this patch, large anon THP is successfully split and the warning is ceased.
CVE-2024-36018 1 Linux 1 Linux Kernel 2025-07-13 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: nouveau/uvmm: fix addr/range calcs for remap operations dEQP-VK.sparse_resources.image_rebind.2d_array.r64i.128_128_8 was causing a remap operation like the below. op_remap: prev: 0000003fffed0000 00000000000f0000 00000000a5abd18a 0000000000000000 op_remap: next: op_remap: unmap: 0000003fffed0000 0000000000100000 0 op_map: map: 0000003ffffc0000 0000000000010000 000000005b1ba33c 00000000000e0000 This was resulting in an unmap operation from 0x3fffed0000+0xf0000, 0x100000 which was corrupting the pagetables and oopsing the kernel. Fixes the prev + unmap range calcs to use start/end and map back to addr/range.
CVE-2024-40937 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gve: Clear napi->skb before dev_kfree_skb_any() gve_rx_free_skb incorrectly leaves napi->skb referencing an skb after it is freed with dev_kfree_skb_any(). This can result in a subsequent call to napi_get_frags returning a dangling pointer. Fix this by clearing napi->skb before the skb is freed.
CVE-2024-53214 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Properly hide first-in-list PCIe extended capability There are cases where a PCIe extended capability should be hidden from the user. For example, an unknown capability (i.e., capability with ID greater than PCI_EXT_CAP_ID_MAX) or a capability that is intentionally chosen to be hidden from the user. Hiding a capability is done by virtualizing and modifying the 'Next Capability Offset' field of the previous capability so it points to the capability after the one that should be hidden. The special case where the first capability in the list should be hidden is handled differently because there is no previous capability that can be modified. In this case, the capability ID and version are zeroed while leaving the next pointer intact. This hides the capability and leaves an anchor for the rest of the capability list. However, today, hiding the first capability in the list is not done properly if the capability is unknown, as struct vfio_pci_core_device->pci_config_map is set to the capability ID during initialization but the capability ID is not properly checked later when used in vfio_config_do_rw(). This leads to the following warning [1] and to an out-of-bounds access to ecap_perms array. Fix it by checking cap_id in vfio_config_do_rw(), and if it is greater than PCI_EXT_CAP_ID_MAX, use an alternative struct perm_bits for direct read only access instead of the ecap_perms array. Note that this is safe since the above is the only case where cap_id can exceed PCI_EXT_CAP_ID_MAX (except for the special capabilities, which are already checked before). [1] WARNING: CPU: 118 PID: 5329 at drivers/vfio/pci/vfio_pci_config.c:1900 vfio_pci_config_rw+0x395/0x430 [vfio_pci_core] CPU: 118 UID: 0 PID: 5329 Comm: simx-qemu-syste Not tainted 6.12.0+ #1 (snip) Call Trace: <TASK> ? show_regs+0x69/0x80 ? __warn+0x8d/0x140 ? vfio_pci_config_rw+0x395/0x430 [vfio_pci_core] ? report_bug+0x18f/0x1a0 ? handle_bug+0x63/0xa0 ? exc_invalid_op+0x19/0x70 ? asm_exc_invalid_op+0x1b/0x20 ? vfio_pci_config_rw+0x395/0x430 [vfio_pci_core] ? vfio_pci_config_rw+0x244/0x430 [vfio_pci_core] vfio_pci_rw+0x101/0x1b0 [vfio_pci_core] vfio_pci_core_read+0x1d/0x30 [vfio_pci_core] vfio_device_fops_read+0x27/0x40 [vfio] vfs_read+0xbd/0x340 ? vfio_device_fops_unl_ioctl+0xbb/0x740 [vfio] ? __rseq_handle_notify_resume+0xa4/0x4b0 __x64_sys_pread64+0x96/0xc0 x64_sys_call+0x1c3d/0x20d0 do_syscall_64+0x4d/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2024-49568 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: check v2_ext_offset/eid_cnt/ism_gid_cnt when receiving proposal msg When receiving proposal msg in server, the fields v2_ext_offset/ eid_cnt/ism_gid_cnt in proposal msg are from the remote client and can not be fully trusted. Especially the field v2_ext_offset, once exceed the max value, there has the chance to access wrong address, and crash may happen. This patch checks the fields v2_ext_offset/eid_cnt/ism_gid_cnt before using them.
CVE-2022-49500 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wl1251: dynamically allocate memory used for DMA With introduction of vmap'ed stacks, stack parameters can no longer be used for DMA and now leads to kernel panic. It happens at several places for the wl1251 (e.g. when accessed through SDIO) making it unuseable on e.g. the OpenPandora. We solve this by allocating temporary buffers or use wl1251_read32(). Tested on v5.18-rc5 with OpenPandora.
CVE-2021-47510 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix re-dirty process of tree-log nodes There is a report of a transaction abort of -EAGAIN with the following script. #!/bin/sh for d in sda sdb; do mkfs.btrfs -d single -m single -f /dev/\${d} done mount /dev/sda /mnt/test mount /dev/sdb /mnt/scratch for dir in test scratch; do echo 3 >/proc/sys/vm/drop_caches fio --directory=/mnt/\${dir} --name=fio.\${dir} --rw=read --size=50G --bs=64m \ --numjobs=$(nproc) --time_based --ramp_time=5 --runtime=480 \ --group_reporting |& tee /dev/shm/fio.\${dir} echo 3 >/proc/sys/vm/drop_caches done for d in sda sdb; do umount /dev/\${d} done The stack trace is shown in below. [3310.967991] BTRFS: error (device sda) in btrfs_commit_transaction:2341: errno=-11 unknown (Error while writing out transaction) [3310.968060] BTRFS info (device sda): forced readonly [3310.968064] BTRFS warning (device sda): Skipping commit of aborted transaction. [3310.968065] ------------[ cut here ]------------ [3310.968066] BTRFS: Transaction aborted (error -11) [3310.968074] WARNING: CPU: 14 PID: 1684 at fs/btrfs/transaction.c:1946 btrfs_commit_transaction.cold+0x209/0x2c8 [3310.968131] CPU: 14 PID: 1684 Comm: fio Not tainted 5.14.10-300.fc35.x86_64 #1 [3310.968135] Hardware name: DIAWAY Tartu/Tartu, BIOS V2.01.B10 04/08/2021 [3310.968137] RIP: 0010:btrfs_commit_transaction.cold+0x209/0x2c8 [3310.968144] RSP: 0018:ffffb284ce393e10 EFLAGS: 00010282 [3310.968147] RAX: 0000000000000026 RBX: ffff973f147b0f60 RCX: 0000000000000027 [3310.968149] RDX: ffff974ecf098a08 RSI: 0000000000000001 RDI: ffff974ecf098a00 [3310.968150] RBP: ffff973f147b0f08 R08: 0000000000000000 R09: ffffb284ce393c48 [3310.968151] R10: ffffb284ce393c40 R11: ffffffff84f47468 R12: ffff973f101bfc00 [3310.968153] R13: ffff971f20cf2000 R14: 00000000fffffff5 R15: ffff973f147b0e58 [3310.968154] FS: 00007efe65468740(0000) GS:ffff974ecf080000(0000) knlGS:0000000000000000 [3310.968157] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [3310.968158] CR2: 000055691bcbe260 CR3: 000000105cfa4001 CR4: 0000000000770ee0 [3310.968160] PKRU: 55555554 [3310.968161] Call Trace: [3310.968167] ? dput+0xd4/0x300 [3310.968174] btrfs_sync_file+0x3f1/0x490 [3310.968180] __x64_sys_fsync+0x33/0x60 [3310.968185] do_syscall_64+0x3b/0x90 [3310.968190] entry_SYSCALL_64_after_hwframe+0x44/0xae [3310.968194] RIP: 0033:0x7efe6557329b [3310.968200] RSP: 002b:00007ffe0236ebc0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a [3310.968203] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007efe6557329b [3310.968204] RDX: 0000000000000000 RSI: 00007efe58d77010 RDI: 0000000000000006 [3310.968205] RBP: 0000000004000000 R08: 0000000000000000 R09: 00007efe58d77010 [3310.968207] R10: 0000000016cacc0c R11: 0000000000000293 R12: 00007efe5ce95980 [3310.968208] R13: 0000000000000000 R14: 00007efe6447c790 R15: 0000000c80000000 [3310.968212] ---[ end trace 1a346f4d3c0d96ba ]--- [3310.968214] BTRFS: error (device sda) in cleanup_transaction:1946: errno=-11 unknown The abort occurs because of a write hole while writing out freeing tree nodes of a tree-log tree. For zoned btrfs, we re-dirty a freed tree node to ensure btrfs can write the region and does not leave a hole on write on a zoned device. The current code fails to re-dirty a node when the tree-log tree's depth is greater or equal to 2. That leads to a transaction abort with -EAGAIN. Fix the issue by properly re-dirtying a node on walking up the tree.
CVE-2023-52836 1 Linux 1 Linux Kernel 2025-07-13 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: locking/ww_mutex/test: Fix potential workqueue corruption In some cases running with the test-ww_mutex code, I was seeing odd behavior where sometimes it seemed flush_workqueue was returning before all the work threads were finished. Often this would cause strange crashes as the mutexes would be freed while they were being used. Looking at the code, there is a lifetime problem as the controlling thread that spawns the work allocates the "struct stress" structures that are passed to the workqueue threads. Then when the workqueue threads are finished, they free the stress struct that was passed to them. Unfortunately the workqueue work_struct node is in the stress struct. Which means the work_struct is freed before the work thread returns and while flush_workqueue is waiting. It seems like a better idea to have the controlling thread both allocate and free the stress structures, so that we can be sure we don't corrupt the workqueue by freeing the structure prematurely. So this patch reworks the test to do so, and with this change I no longer see the early flush_workqueue returns.
CVE-2023-53081 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix data corruption after failed write When buffered write fails to copy data into underlying page cache page, ocfs2_write_end_nolock() just zeroes out and dirties the page. This can leave dirty page beyond EOF and if page writeback tries to write this page before write succeeds and expands i_size, page gets into inconsistent state where page dirty bit is clear but buffer dirty bits stay set resulting in page data never getting written and so data copied to the page is lost. Fix the problem by invalidating page beyond EOF after failed write.
CVE-2023-53067 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Only call get_timer_irq() once in constant_clockevent_init() Under CONFIG_DEBUG_ATOMIC_SLEEP=y and CONFIG_DEBUG_PREEMPT=y, we can see the following messages on LoongArch, this is because using might_sleep() in preemption disable context. [ 0.001127] smp: Bringing up secondary CPUs ... [ 0.001222] Booting CPU#1... [ 0.001244] 64-bit Loongson Processor probed (LA464 Core) [ 0.001247] CPU1 revision is: 0014c012 (Loongson-64bit) [ 0.001250] FPU1 revision is: 00000000 [ 0.001252] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:283 [ 0.001255] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1 [ 0.001257] preempt_count: 1, expected: 0 [ 0.001258] RCU nest depth: 0, expected: 0 [ 0.001259] Preemption disabled at: [ 0.001261] [<9000000000223800>] arch_dup_task_struct+0x20/0x110 [ 0.001272] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.2.0-rc7+ #43 [ 0.001275] Hardware name: Loongson Loongson-3A5000-7A1000-1w-A2101/Loongson-LS3A5000-7A1000-1w-A2101, BIOS vUDK2018-LoongArch-V4.0.05132-beta10 12/13/202 [ 0.001277] Stack : 0072617764726148 0000000000000000 9000000000222f1c 90000001001e0000 [ 0.001286] 90000001001e3be0 90000001001e3be8 0000000000000000 0000000000000000 [ 0.001292] 90000001001e3be8 0000000000000040 90000001001e3cb8 90000001001e3a50 [ 0.001297] 9000000001642000 90000001001e3be8 be694d10ce4139dd 9000000100174500 [ 0.001303] 0000000000000001 0000000000000001 00000000ffffe0a2 0000000000000020 [ 0.001309] 000000000000002f 9000000001354116 00000000056b0000 ffffffffffffffff [ 0.001314] 0000000000000000 0000000000000000 90000000014f6e90 9000000001642000 [ 0.001320] 900000000022b69c 0000000000000001 0000000000000000 9000000001736a90 [ 0.001325] 9000000100038000 0000000000000000 9000000000222f34 0000000000000000 [ 0.001331] 00000000000000b0 0000000000000004 0000000000000000 0000000000070000 [ 0.001337] ... [ 0.001339] Call Trace: [ 0.001342] [<9000000000222f34>] show_stack+0x5c/0x180 [ 0.001346] [<90000000010bdd80>] dump_stack_lvl+0x60/0x88 [ 0.001352] [<9000000000266418>] __might_resched+0x180/0x1cc [ 0.001356] [<90000000010c742c>] mutex_lock+0x20/0x64 [ 0.001359] [<90000000002a8ccc>] irq_find_matching_fwspec+0x48/0x124 [ 0.001364] [<90000000002259c4>] constant_clockevent_init+0x68/0x204 [ 0.001368] [<900000000022acf4>] start_secondary+0x40/0xa8 [ 0.001371] [<90000000010c0124>] smpboot_entry+0x60/0x64 Here are the complete call chains: smpboot_entry() start_secondary() constant_clockevent_init() get_timer_irq() irq_find_matching_fwnode() irq_find_matching_fwspec() mutex_lock() might_sleep() __might_sleep() __might_resched() In order to avoid the above issue, we should break the call chains, using timer_irq_installed variable as check condition to only call get_timer_irq() once in constant_clockevent_init() is a simple and proper way.
CVE-2022-49265 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: domains: Fix sleep-in-atomic bug caused by genpd_debug_remove() When a genpd with GENPD_FLAG_IRQ_SAFE gets removed, the following sleep-in-atomic bug will be seen, as genpd_debug_remove() will be called with a spinlock being held. [ 0.029183] BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1460 [ 0.029204] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1, name: swapper/0 [ 0.029219] preempt_count: 1, expected: 0 [ 0.029230] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.17.0-rc4+ #489 [ 0.029245] Hardware name: Thundercomm TurboX CM2290 (DT) [ 0.029256] Call trace: [ 0.029265] dump_backtrace.part.0+0xbc/0xd0 [ 0.029285] show_stack+0x3c/0xa0 [ 0.029298] dump_stack_lvl+0x7c/0xa0 [ 0.029311] dump_stack+0x18/0x34 [ 0.029323] __might_resched+0x10c/0x13c [ 0.029338] __might_sleep+0x4c/0x80 [ 0.029351] down_read+0x24/0xd0 [ 0.029363] lookup_one_len_unlocked+0x9c/0xcc [ 0.029379] lookup_positive_unlocked+0x10/0x50 [ 0.029392] debugfs_lookup+0x68/0xac [ 0.029406] genpd_remove.part.0+0x12c/0x1b4 [ 0.029419] of_genpd_remove_last+0xa8/0xd4 [ 0.029434] psci_cpuidle_domain_probe+0x174/0x53c [ 0.029449] platform_probe+0x68/0xe0 [ 0.029462] really_probe+0x190/0x430 [ 0.029473] __driver_probe_device+0x90/0x18c [ 0.029485] driver_probe_device+0x40/0xe0 [ 0.029497] __driver_attach+0xf4/0x1d0 [ 0.029508] bus_for_each_dev+0x70/0xd0 [ 0.029523] driver_attach+0x24/0x30 [ 0.029534] bus_add_driver+0x164/0x22c [ 0.029545] driver_register+0x78/0x130 [ 0.029556] __platform_driver_register+0x28/0x34 [ 0.029569] psci_idle_init_domains+0x1c/0x28 [ 0.029583] do_one_initcall+0x50/0x1b0 [ 0.029595] kernel_init_freeable+0x214/0x280 [ 0.029609] kernel_init+0x2c/0x13c [ 0.029622] ret_from_fork+0x10/0x20 It doesn't seem necessary to call genpd_debug_remove() with the lock, so move it out from locking to fix the problem.
CVE-2024-35917 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/bpf: Fix bpf_plt pointer arithmetic Kui-Feng Lee reported a crash on s390x triggered by the dummy_st_ops/dummy_init_ptr_arg test [1]: [<0000000000000002>] 0x2 [<00000000009d5cde>] bpf_struct_ops_test_run+0x156/0x250 [<000000000033145a>] __sys_bpf+0xa1a/0xd00 [<00000000003319dc>] __s390x_sys_bpf+0x44/0x50 [<0000000000c4382c>] __do_syscall+0x244/0x300 [<0000000000c59a40>] system_call+0x70/0x98 This is caused by GCC moving memcpy() after assignments in bpf_jit_plt(), resulting in NULL pointers being written instead of the return and the target addresses. Looking at the GCC internals, the reordering is allowed because the alias analysis thinks that the memcpy() destination and the assignments' left-hand-sides are based on different objects: new_plt and bpf_plt_ret/bpf_plt_target respectively, and therefore they cannot alias. This is in turn due to a violation of the C standard: When two pointers are subtracted, both shall point to elements of the same array object, or one past the last element of the array object ... From the C's perspective, bpf_plt_ret and bpf_plt are distinct objects and cannot be subtracted. In the practical terms, doing so confuses the GCC's alias analysis. The code was written this way in order to let the C side know a few offsets defined in the assembly. While nice, this is by no means necessary. Fix the noncompliance by hardcoding these offsets. [1] https://lore.kernel.org/bpf/c9923c1d-971d-4022-8dc8-1364e929d34c@gmail.com/
CVE-2022-49149 1 Linux 1 Linux Kernel 2025-07-13 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix call timer start racing with call destruction The rxrpc_call struct has a timer used to handle various timed events relating to a call. This timer can get started from the packet input routines that are run in softirq mode with just the RCU read lock held. Unfortunately, because only the RCU read lock is held - and neither ref or other lock is taken - the call can start getting destroyed at the same time a packet comes in addressed to that call. This causes the timer - which was already stopped - to get restarted. Later, the timer dispatch code may then oops if the timer got deallocated first. Fix this by trying to take a ref on the rxrpc_call struct and, if successful, passing that ref along to the timer. If the timer was already running, the ref is discarded. The timer completion routine can then pass the ref along to the call's work item when it queues it. If the timer or work item where already queued/running, the extra ref is discarded.
CVE-2022-49170 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on curseg->alloc_type As Wenqing Liu reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=215657 - Overview UBSAN: array-index-out-of-bounds in fs/f2fs/segment.c:3460:2 when mount and operate a corrupted image - Reproduce tested on kernel 5.17-rc4, 5.17-rc6 1. mkdir test_crash 2. cd test_crash 3. unzip tmp2.zip 4. mkdir mnt 5. ./single_test.sh f2fs 2 - Kernel dump [ 46.434454] loop0: detected capacity change from 0 to 131072 [ 46.529839] F2FS-fs (loop0): Mounted with checkpoint version = 7548c2d9 [ 46.738319] ================================================================================ [ 46.738412] UBSAN: array-index-out-of-bounds in fs/f2fs/segment.c:3460:2 [ 46.738475] index 231 is out of range for type 'unsigned int [2]' [ 46.738539] CPU: 2 PID: 939 Comm: umount Not tainted 5.17.0-rc6 #1 [ 46.738547] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 46.738551] Call Trace: [ 46.738556] <TASK> [ 46.738563] dump_stack_lvl+0x47/0x5c [ 46.738581] ubsan_epilogue+0x5/0x50 [ 46.738592] __ubsan_handle_out_of_bounds+0x68/0x80 [ 46.738604] f2fs_allocate_data_block+0xdff/0xe60 [f2fs] [ 46.738819] do_write_page+0xef/0x210 [f2fs] [ 46.738934] f2fs_do_write_node_page+0x3f/0x80 [f2fs] [ 46.739038] __write_node_page+0x2b7/0x920 [f2fs] [ 46.739162] f2fs_sync_node_pages+0x943/0xb00 [f2fs] [ 46.739293] f2fs_write_checkpoint+0x7bb/0x1030 [f2fs] [ 46.739405] kill_f2fs_super+0x125/0x150 [f2fs] [ 46.739507] deactivate_locked_super+0x60/0xc0 [ 46.739517] deactivate_super+0x70/0xb0 [ 46.739524] cleanup_mnt+0x11a/0x200 [ 46.739532] __cleanup_mnt+0x16/0x20 [ 46.739538] task_work_run+0x67/0xa0 [ 46.739547] exit_to_user_mode_prepare+0x18c/0x1a0 [ 46.739559] syscall_exit_to_user_mode+0x26/0x40 [ 46.739568] do_syscall_64+0x46/0xb0 [ 46.739584] entry_SYSCALL_64_after_hwframe+0x44/0xae The root cause is we missed to do sanity check on curseg->alloc_type, result in out-of-bound accessing on sbi->block_count[] array, fix it.
CVE-2024-27401 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firewire: nosy: ensure user_length is taken into account when fetching packet contents Ensure that packet_buffer_get respects the user_length provided. If the length of the head packet exceeds the user_length, packet_buffer_get will now return 0 to signify to the user that no data were read and a larger buffer size is required. Helps prevent user space overflows.
CVE-2024-35909 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: Split 64bit accesses to fix alignment issues Some of the registers are aligned on a 32bit boundary, causing alignment faults on 64bit platforms. Unable to handle kernel paging request at virtual address ffffffc084a1d004 Mem abort info: ESR = 0x0000000096000061 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x21: alignment fault Data abort info: ISV = 0, ISS = 0x00000061, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000046ad6000 [ffffffc084a1d004] pgd=100000013ffff003, p4d=100000013ffff003, pud=100000013ffff003, pmd=0068000020a00711 Internal error: Oops: 0000000096000061 [#1] SMP Modules linked in: mtk_t7xx(+) qcserial pppoe ppp_async option nft_fib_inet nf_flow_table_inet mt7921u(O) mt7921s(O) mt7921e(O) mt7921_common(O) iwlmvm(O) iwldvm(O) usb_wwan rndis_host qmi_wwan pppox ppp_generic nft_reject_ipv6 nft_reject_ipv4 nft_reject_inet nft_reject nft_redir nft_quota nft_numgen nft_nat nft_masq nft_log nft_limit nft_hash nft_flow_offload nft_fib_ipv6 nft_fib_ipv4 nft_fib nft_ct nft_chain_nat nf_tables nf_nat nf_flow_table nf_conntrack mt7996e(O) mt792x_usb(O) mt792x_lib(O) mt7915e(O) mt76_usb(O) mt76_sdio(O) mt76_connac_lib(O) mt76(O) mac80211(O) iwlwifi(O) huawei_cdc_ncm cfg80211(O) cdc_ncm cdc_ether wwan usbserial usbnet slhc sfp rtc_pcf8563 nfnetlink nf_reject_ipv6 nf_reject_ipv4 nf_log_syslog nf_defrag_ipv6 nf_defrag_ipv4 mt6577_auxadc mdio_i2c libcrc32c compat(O) cdc_wdm cdc_acm at24 crypto_safexcel pwm_fan i2c_gpio i2c_smbus industrialio i2c_algo_bit i2c_mux_reg i2c_mux_pca954x i2c_mux_pca9541 i2c_mux_gpio i2c_mux dummy oid_registry tun sha512_arm64 sha1_ce sha1_generic seqiv md5 geniv des_generic libdes cbc authencesn authenc leds_gpio xhci_plat_hcd xhci_pci xhci_mtk_hcd xhci_hcd nvme nvme_core gpio_button_hotplug(O) dm_mirror dm_region_hash dm_log dm_crypt dm_mod dax usbcore usb_common ptp aquantia pps_core mii tpm encrypted_keys trusted CPU: 3 PID: 5266 Comm: kworker/u9:1 Tainted: G O 6.6.22 #0 Hardware name: Bananapi BPI-R4 (DT) Workqueue: md_hk_wq t7xx_fsm_uninit [mtk_t7xx] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : t7xx_cldma_hw_set_start_addr+0x1c/0x3c [mtk_t7xx] lr : t7xx_cldma_start+0xac/0x13c [mtk_t7xx] sp : ffffffc085d63d30 x29: ffffffc085d63d30 x28: 0000000000000000 x27: 0000000000000000 x26: 0000000000000000 x25: ffffff80c804f2c0 x24: ffffff80ca196c05 x23: 0000000000000000 x22: ffffff80c814b9b8 x21: ffffff80c814b128 x20: 0000000000000001 x19: ffffff80c814b080 x18: 0000000000000014 x17: 0000000055c9806b x16: 000000007c5296d0 x15: 000000000f6bca68 x14: 00000000dbdbdce4 x13: 000000001aeaf72a x12: 0000000000000001 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : ffffff80ca1ef6b4 x7 : ffffff80c814b818 x6 : 0000000000000018 x5 : 0000000000000870 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 000000010a947000 x1 : ffffffc084a1d004 x0 : ffffffc084a1d004 Call trace: t7xx_cldma_hw_set_start_addr+0x1c/0x3c [mtk_t7xx] t7xx_fsm_uninit+0x578/0x5ec [mtk_t7xx] process_one_work+0x154/0x2a0 worker_thread+0x2ac/0x488 kthread+0xe0/0xec ret_from_fork+0x10/0x20 Code: f9400800 91001000 8b214001 d50332bf (f9000022) ---[ end trace 0000000000000000 ]--- The inclusion of io-64-nonatomic-lo-hi.h indicates that all 64bit accesses can be replaced by pairs of nonatomic 32bit access. Fix alignment by forcing all accesses to be 32bit on 64bit platforms.
CVE-2022-48806 1 Linux 1 Linux Kernel 2025-07-13 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: eeprom: ee1004: limit i2c reads to I2C_SMBUS_BLOCK_MAX Commit effa453168a7 ("i2c: i801: Don't silently correct invalid transfer size") revealed that ee1004_eeprom_read() did not properly limit how many bytes to read at once. In particular, i2c_smbus_read_i2c_block_data_or_emulated() takes the length to read as an u8. If count == 256 after taking into account the offset and page boundary, the cast to u8 overflows. And this is common when user space tries to read the entire EEPROM at once. To fix it, limit each read to I2C_SMBUS_BLOCK_MAX (32) bytes, already the maximum length i2c_smbus_read_i2c_block_data_or_emulated() allows.
CVE-2022-49525 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: cx25821: Fix the warning when removing the module When removing the module, we will get the following warning: [ 14.746697] remove_proc_entry: removing non-empty directory 'irq/21', leaking at least 'cx25821[1]' [ 14.747449] WARNING: CPU: 4 PID: 368 at fs/proc/generic.c:717 remove_proc_entry+0x389/0x3f0 [ 14.751611] RIP: 0010:remove_proc_entry+0x389/0x3f0 [ 14.759589] Call Trace: [ 14.759792] <TASK> [ 14.759975] unregister_irq_proc+0x14c/0x170 [ 14.760340] irq_free_descs+0x94/0xe0 [ 14.760640] mp_unmap_irq+0xb6/0x100 [ 14.760937] acpi_unregister_gsi_ioapic+0x27/0x40 [ 14.761334] acpi_pci_irq_disable+0x1d3/0x320 [ 14.761688] pci_disable_device+0x1ad/0x380 [ 14.762027] ? _raw_spin_unlock_irqrestore+0x2d/0x60 [ 14.762442] ? cx25821_shutdown+0x20/0x9f0 [cx25821] [ 14.762848] cx25821_finidev+0x48/0xc0 [cx25821] [ 14.763242] pci_device_remove+0x92/0x240 Fix this by freeing the irq before call pci_disable_device().
CVE-2022-48631 1 Linux 1 Linux Kernel 2025-07-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix bug in extents parsing when eh_entries == 0 and eh_depth > 0 When walking through an inode extents, the ext4_ext_binsearch_idx() function assumes that the extent header has been previously validated. However, there are no checks that verify that the number of entries (eh->eh_entries) is non-zero when depth is > 0. And this will lead to problems because the EXT_FIRST_INDEX() and EXT_LAST_INDEX() will return garbage and result in this: [ 135.245946] ------------[ cut here ]------------ [ 135.247579] kernel BUG at fs/ext4/extents.c:2258! [ 135.249045] invalid opcode: 0000 [#1] PREEMPT SMP [ 135.250320] CPU: 2 PID: 238 Comm: tmp118 Not tainted 5.19.0-rc8+ #4 [ 135.252067] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014 [ 135.255065] RIP: 0010:ext4_ext_map_blocks+0xc20/0xcb0 [ 135.256475] Code: [ 135.261433] RSP: 0018:ffffc900005939f8 EFLAGS: 00010246 [ 135.262847] RAX: 0000000000000024 RBX: ffffc90000593b70 RCX: 0000000000000023 [ 135.264765] RDX: ffff8880038e5f10 RSI: 0000000000000003 RDI: ffff8880046e922c [ 135.266670] RBP: ffff8880046e9348 R08: 0000000000000001 R09: ffff888002ca580c [ 135.268576] R10: 0000000000002602 R11: 0000000000000000 R12: 0000000000000024 [ 135.270477] R13: 0000000000000000 R14: 0000000000000024 R15: 0000000000000000 [ 135.272394] FS: 00007fdabdc56740(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000 [ 135.274510] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 135.276075] CR2: 00007ffc26bd4f00 CR3: 0000000006261004 CR4: 0000000000170ea0 [ 135.277952] Call Trace: [ 135.278635] <TASK> [ 135.279247] ? preempt_count_add+0x6d/0xa0 [ 135.280358] ? percpu_counter_add_batch+0x55/0xb0 [ 135.281612] ? _raw_read_unlock+0x18/0x30 [ 135.282704] ext4_map_blocks+0x294/0x5a0 [ 135.283745] ? xa_load+0x6f/0xa0 [ 135.284562] ext4_mpage_readpages+0x3d6/0x770 [ 135.285646] read_pages+0x67/0x1d0 [ 135.286492] ? folio_add_lru+0x51/0x80 [ 135.287441] page_cache_ra_unbounded+0x124/0x170 [ 135.288510] filemap_get_pages+0x23d/0x5a0 [ 135.289457] ? path_openat+0xa72/0xdd0 [ 135.290332] filemap_read+0xbf/0x300 [ 135.291158] ? _raw_spin_lock_irqsave+0x17/0x40 [ 135.292192] new_sync_read+0x103/0x170 [ 135.293014] vfs_read+0x15d/0x180 [ 135.293745] ksys_read+0xa1/0xe0 [ 135.294461] do_syscall_64+0x3c/0x80 [ 135.295284] entry_SYSCALL_64_after_hwframe+0x46/0xb0 This patch simply adds an extra check in __ext4_ext_check(), verifying that eh_entries is not 0 when eh_depth is > 0.