| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Legrand BTicino Driver Manager F454 1.0.51 contains multiple web vulnerabilities that allow attackers to perform administrative actions without proper request validation. Attackers can exploit cross-site request forgery to change passwords and inject stored cross-site scripting payloads through unvalidated GET parameters. |
| Microhard Systems IPn4G 1.1.0 contains an authentication bypass vulnerability in the hidden system-editor.sh script that allows authenticated attackers to read, modify, or delete arbitrary files. Attackers can exploit unsanitized 'path', 'savefile', 'edit', and 'delfile' parameters to perform unauthorized file system modifications through GET and POST requests. |
| Microhard Systems IPn4G 1.1.0 contains hardcoded default credentials that cannot be changed through normal gateway operations. Attackers can exploit these default credentials to gain unauthorized root-level access to the device by logging in with predefined username and password combinations. |
| Ecessa WANWorx WVR-30 versions before 10.7.4 contain a cross-site request forgery vulnerability that allows attackers to perform administrative actions without request validation. Attackers can craft a malicious web page with a hidden form to create a new superuser account by tricking an authenticated administrator into loading the page. |
| Beward N100 M2.1.6.04C014 contains an unauthenticated vulnerability that allows remote attackers to access live video streams without credentials. Attackers can directly retrieve the camera's RTSP stream by exploiting the lack of authentication in the video access mechanism. |
| devolo dLAN 500 AV Wireless+ 3.1.0-1 contains an authentication bypass vulnerability that allows attackers to enable hidden services through the htmlmgr CGI script. Attackers can enable telnet and remote shell services, reboot the device, and gain root access without a password by manipulating system configuration parameters. |
| SOCA Access Control System 180612 contains a cross-site request forgery vulnerability that allows attackers to perform administrative actions without proper request validation. Attackers can craft malicious web pages that submit forged requests to create admin accounts by tricking logged-in users into visiting a malicious site. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Echo Call Center Services Trade and Industry Inc. Specto CM allows Stored XSS.This issue affects Specto CM: before 17032025. |
| URL Redirection to Untrusted Site ('Open Redirect') vulnerability in Scott Paterson Accept Donations with PayPal easy-paypal-donation allows Phishing.This issue affects Accept Donations with PayPal: from n/a through <= 1.5.1. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Prevent potential UAF in group creation
This commit prevents the possibility of a use after free issue in the
GROUP_CREATE ioctl function, which arose as pointer to the group is
accessed in that ioctl function after storing it in the Xarray.
A malicious userspace can second guess the handle of a group and try
to call GROUP_DESTROY ioctl from another thread around the same time
as GROUP_CREATE ioctl.
To prevent the use after free exploit, this commit uses a mark on an
entry of group pool Xarray which is added just before returning from
the GROUP_CREATE ioctl function. The mark is checked for all ioctls
that specify the group handle and so userspace won't be abe to delete
a group that isn't marked yet.
v2: Add R-bs and fixes tags |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF on kernel BO VA nodes
If the MMU is down, panthor_vm_unmap_range() might return an error.
We expect the page table to be updated still, and if the MMU is blocked,
the rest of the GPU should be blocked too, so no risk of accessing
physical memory returned to the system (which the current code doesn't
cover for anyway).
Proceed with the rest of the cleanup instead of bailing out and leaving
the va_node inserted in the drm_mm, which leads to UAF when other
adjacent nodes are removed from the drm_mm tree. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sprd: Fix DMA buffer leak issue
Release DMA buffer when _probe() returns failure to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse
A syzbot stress test using a corrupted disk image reported that
mark_buffer_dirty() called from __nilfs_mark_inode_dirty() or
nilfs_palloc_commit_alloc_entry() may output a kernel warning, and can
panic if the kernel is booted with panic_on_warn.
This is because nilfs2 keeps buffer pointers in local structures for some
metadata and reuses them, but such buffers may be forcibly discarded by
nilfs_clear_dirty_page() in some critical situations.
This issue is reported to appear after commit 28a65b49eb53 ("nilfs2: do
not write dirty data after degenerating to read-only"), but the issue has
potentially existed before.
Fix this issue by checking the uptodate flag when attempting to reuse an
internally held buffer, and reloading the metadata instead of reusing the
buffer if the flag was lost. |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/type1: fix cap_migration information leak
Fix an information leak where an uninitialized hole in struct
vfio_iommu_type1_info_cap_migration on the stack is exposed to userspace.
The definition of struct vfio_iommu_type1_info_cap_migration contains a hole as
shown in this pahole(1) output:
struct vfio_iommu_type1_info_cap_migration {
struct vfio_info_cap_header header; /* 0 8 */
__u32 flags; /* 8 4 */
/* XXX 4 bytes hole, try to pack */
__u64 pgsize_bitmap; /* 16 8 */
__u64 max_dirty_bitmap_size; /* 24 8 */
/* size: 32, cachelines: 1, members: 4 */
/* sum members: 28, holes: 1, sum holes: 4 */
/* last cacheline: 32 bytes */
};
The cap_mig variable is filled in without initializing the hole:
static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
struct vfio_info_cap *caps)
{
struct vfio_iommu_type1_info_cap_migration cap_mig;
cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
cap_mig.header.version = 1;
cap_mig.flags = 0;
/* support minimum pgsize */
cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
}
The structure is then copied to a temporary location on the heap. At this point
it's already too late and ioctl(VFIO_IOMMU_GET_INFO) copies it to userspace
later:
int vfio_info_add_capability(struct vfio_info_cap *caps,
struct vfio_info_cap_header *cap, size_t size)
{
struct vfio_info_cap_header *header;
header = vfio_info_cap_add(caps, size, cap->id, cap->version);
if (IS_ERR(header))
return PTR_ERR(header);
memcpy(header + 1, cap + 1, size - sizeof(*header));
return 0;
}
This issue was found by code inspection. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix NULL-deref on irq uninstall
In case of early initialisation errors and on platforms that do not use
the DPU controller, the deinitilisation code can be called with the kms
pointer set to NULL.
Patchwork: https://patchwork.freedesktop.org/patch/525104/ |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Add missing hw_ops->get_ring_selector() for IPQ5018
During sending data after clients connected, hw_ops->get_ring_selector()
will be called. But for IPQ5018, this member isn't set, and the
following NULL pointer exception will be occurred:
[ 38.840478] 8<--- cut here ---
[ 38.840517] Unable to handle kernel NULL pointer dereference at virtual address 00000000
...
[ 38.923161] PC is at 0x0
[ 38.927930] LR is at ath11k_dp_tx+0x70/0x730 [ath11k]
...
[ 39.063264] Process hostapd (pid: 1034, stack limit = 0x801ceb3d)
[ 39.068994] Stack: (0x856a9a68 to 0x856aa000)
...
[ 39.438467] [<7f323804>] (ath11k_dp_tx [ath11k]) from [<7f314e6c>] (ath11k_mac_op_tx+0x80/0x190 [ath11k])
[ 39.446607] [<7f314e6c>] (ath11k_mac_op_tx [ath11k]) from [<7f17dbe0>] (ieee80211_handle_wake_tx_queue+0x7c/0xc0 [mac80211])
[ 39.456162] [<7f17dbe0>] (ieee80211_handle_wake_tx_queue [mac80211]) from [<7f174450>] (ieee80211_probereq_get+0x584/0x704 [mac80211])
[ 39.467443] [<7f174450>] (ieee80211_probereq_get [mac80211]) from [<7f178c40>] (ieee80211_tx_prepare_skb+0x1f8/0x248 [mac80211])
[ 39.479334] [<7f178c40>] (ieee80211_tx_prepare_skb [mac80211]) from [<7f179e28>] (__ieee80211_subif_start_xmit+0x32c/0x3d4 [mac80211])
[ 39.491053] [<7f179e28>] (__ieee80211_subif_start_xmit [mac80211]) from [<7f17af08>] (ieee80211_tx_control_port+0x19c/0x288 [mac80211])
[ 39.502946] [<7f17af08>] (ieee80211_tx_control_port [mac80211]) from [<7f0fc704>] (nl80211_tx_control_port+0x174/0x1d4 [cfg80211])
[ 39.515017] [<7f0fc704>] (nl80211_tx_control_port [cfg80211]) from [<808ceac4>] (genl_rcv_msg+0x154/0x340)
[ 39.526814] [<808ceac4>] (genl_rcv_msg) from [<808cdb74>] (netlink_rcv_skb+0xb8/0x11c)
[ 39.536446] [<808cdb74>] (netlink_rcv_skb) from [<808ce1d0>] (genl_rcv+0x28/0x34)
[ 39.544344] [<808ce1d0>] (genl_rcv) from [<808cd234>] (netlink_unicast+0x174/0x274)
[ 39.551895] [<808cd234>] (netlink_unicast) from [<808cd510>] (netlink_sendmsg+0x1dc/0x440)
[ 39.559362] [<808cd510>] (netlink_sendmsg) from [<808596e0>] (____sys_sendmsg+0x1a8/0x1fc)
[ 39.567697] [<808596e0>] (____sys_sendmsg) from [<8085b1a8>] (___sys_sendmsg+0xa4/0xdc)
[ 39.575941] [<8085b1a8>] (___sys_sendmsg) from [<8085b310>] (sys_sendmsg+0x44/0x74)
[ 39.583841] [<8085b310>] (sys_sendmsg) from [<80300060>] (ret_fast_syscall+0x0/0x40)
...
[ 39.620734] Code: bad PC value
[ 39.625869] ---[ end trace 8aef983ad3cbc032 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix kernel warning during topology setup
This patch fixes the following kernel warning seen during
driver load by correctly initializing the p2plink attr before
creating the sysfs file:
[ +0.002865] ------------[ cut here ]------------
[ +0.002327] kobject: '(null)' (0000000056260cfb): is not initialized, yet kobject_put() is being called.
[ +0.004780] WARNING: CPU: 32 PID: 1006 at lib/kobject.c:718 kobject_put+0xaa/0x1c0
[ +0.001361] Call Trace:
[ +0.001234] <TASK>
[ +0.001067] kfd_remove_sysfs_node_entry+0x24a/0x2d0 [amdgpu]
[ +0.003147] kfd_topology_update_sysfs+0x3d/0x750 [amdgpu]
[ +0.002890] kfd_topology_add_device+0xbd7/0xc70 [amdgpu]
[ +0.002844] ? lock_release+0x13c/0x2e0
[ +0.001936] ? smu_cmn_send_smc_msg_with_param+0x1e8/0x2d0 [amdgpu]
[ +0.003313] ? amdgpu_dpm_get_mclk+0x54/0x60 [amdgpu]
[ +0.002703] kgd2kfd_device_init.cold+0x39f/0x4ed [amdgpu]
[ +0.002930] amdgpu_amdkfd_device_init+0x13d/0x1f0 [amdgpu]
[ +0.002944] amdgpu_device_init.cold+0x1464/0x17b4 [amdgpu]
[ +0.002970] ? pci_bus_read_config_word+0x43/0x80
[ +0.002380] amdgpu_driver_load_kms+0x15/0x100 [amdgpu]
[ +0.002744] amdgpu_pci_probe+0x147/0x370 [amdgpu]
[ +0.002522] local_pci_probe+0x40/0x80
[ +0.001896] work_for_cpu_fn+0x10/0x20
[ +0.001892] process_one_work+0x26e/0x5a0
[ +0.002029] worker_thread+0x1fd/0x3e0
[ +0.001890] ? process_one_work+0x5a0/0x5a0
[ +0.002115] kthread+0xea/0x110
[ +0.001618] ? kthread_complete_and_exit+0x20/0x20
[ +0.002422] ret_from_fork+0x1f/0x30
[ +0.001808] </TASK>
[ +0.001103] irq event stamp: 59837
[ +0.001718] hardirqs last enabled at (59849): [<ffffffffb30fab12>] __up_console_sem+0x52/0x60
[ +0.004414] hardirqs last disabled at (59860): [<ffffffffb30faaf7>] __up_console_sem+0x37/0x60
[ +0.004414] softirqs last enabled at (59654): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130
[ +0.004205] softirqs last disabled at (59649): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130
[ +0.004203] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: drop unnecessary user-triggerable WARN_ONCE in verifierl log
It's trivial for user to trigger "verifier log line truncated" warning,
as verifier has a fixed-sized buffer of 1024 bytes (as of now), and there are at
least two pieces of user-provided information that can be output through
this buffer, and both can be arbitrarily sized by user:
- BTF names;
- BTF.ext source code lines strings.
Verifier log buffer should be properly sized for typical verifier state
output. But it's sort-of expected that this buffer won't be long enough
in some circumstances. So let's drop the check. In any case code will
work correctly, at worst truncating a part of a single line output. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/kexec: Fix double-free of elf header buffer
After
b3e34a47f989 ("x86/kexec: fix memory leak of elf header buffer"),
freeing image->elf_headers in the error path of crash_load_segments()
is not needed because kimage_file_post_load_cleanup() will take
care of that later. And not clearing it could result in a double-free.
Drop the superfluous vfree() call at the error path of
crash_load_segments(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by moving j1939_sk_errqueue()
This commit addresses a deadlock situation that can occur in certain
scenarios, such as when running data TP/ETP transfer and subscribing to
the error queue while receiving a net down event. The deadlock involves
locks in the following order:
3
j1939_session_list_lock -> active_session_list_lock
j1939_session_activate
...
j1939_sk_queue_activate_next -> sk_session_queue_lock
...
j1939_xtp_rx_eoma_one
2
j1939_sk_queue_drop_all -> sk_session_queue_lock
...
j1939_sk_netdev_event_netdown -> j1939_socks_lock
j1939_netdev_notify
1
j1939_sk_errqueue -> j1939_socks_lock
__j1939_session_cancel -> active_session_list_lock
j1939_tp_rxtimer
CPU0 CPU1
---- ----
lock(&priv->active_session_list_lock);
lock(&jsk->sk_session_queue_lock);
lock(&priv->active_session_list_lock);
lock(&priv->j1939_socks_lock);
The solution implemented in this commit is to move the
j1939_sk_errqueue() call out of the active_session_list_lock context,
thus preventing the deadlock situation. |