| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: pnv_php: Fix surprise plug detection and recovery
The existing PowerNV hotplug code did not handle surprise plug events
correctly, leading to a complete failure of the hotplug system after device
removal and a required reboot to detect new devices.
This comes down to two issues:
1) When a device is surprise removed, often the bridge upstream
port will cause a PE freeze on the PHB. If this freeze is not
cleared, the MSI interrupts from the bridge hotplug notification
logic will not be received by the kernel, stalling all plug events
on all slots associated with the PE.
2) When a device is removed from a slot, regardless of surprise or
programmatic removal, the associated PHB/PE ls left frozen.
If this freeze is not cleared via a fundamental reset, skiboot
is unable to clear the freeze and cannot retrain / rescan the
slot. This also requires a reboot to clear the freeze and redetect
the device in the slot.
Issue the appropriate unfreeze and rescan commands on hotplug events,
and don't oops on hotplug if pci_bus_to_OF_node() returns NULL.
[bhelgaas: tidy comments] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/eeh: Make EEH driver device hotplug safe
Multiple race conditions existed between the PCIe hotplug driver and the
EEH driver, leading to a variety of kernel oopses of the same general
nature:
<pcie device unplug>
<eeh driver trigger>
<hotplug removal trigger>
<pcie tree reconfiguration>
<eeh recovery next step>
<oops in EEH driver bus iteration loop>
A second class of oops is also seen when the underlying bus disappears
during device recovery.
Refactor the EEH module to be PCI rescan and remove safe. Also clean
up a few minor formatting / readability issues. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/sev: Evict cache lines during SNP memory validation
An SNP cache coherency vulnerability requires a cache line eviction
mitigation when validating memory after a page state change to private.
The specific mitigation is to touch the first and last byte of each 4K
page that is being validated. There is no need to perform the mitigation
when performing a page state change to shared and rescinding validation.
CPUID bit Fn8000001F_EBX[31] defines the COHERENCY_SFW_NO CPUID bit
that, when set, indicates that the software mitigation for this
vulnerability is not needed.
Implement the mitigation and invoke it when validating memory (making it
private) and the COHERENCY_SFW_NO bit is not set, indicating the SNP
guest is vulnerable. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: quirks: Add quirk for 2 Chicony Electronics HP 5MP Cameras
The Chicony Electronics HP 5MP Cameras (USB ID 04F2:B824 & 04F2:B82C)
report a HID sensor interface that is not actually implemented.
Attempting to access this non-functional sensor via iio_info causes
system hangs as runtime PM tries to wake up an unresponsive sensor.
Add these 2 devices to the HID ignore list since the sensor interface is
non-functional by design and should not be exposed to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: common: st_sensors: Fix use of uninitialize device structs
Throughout the various probe functions &indio_dev->dev is used before it
is initialized. This caused a kernel panic in st_sensors_power_enable()
when the call to devm_regulator_bulk_get_enable() fails and then calls
dev_err_probe() with the uninitialized device.
This seems to only cause a panic with dev_err_probe(), dev_err(),
dev_warn() and dev_info() don't seem to cause a panic, but are fixed
as well.
The issue is reported and traced here: [1] |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix oops due to non-existence of prealloc backlog struct
If an AF_RXRPC service socket is opened and bound, but calls are
preallocated, then rxrpc_alloc_incoming_call() will oops because the
rxrpc_backlog struct doesn't get allocated until the first preallocation is
made.
Fix this by returning NULL from rxrpc_alloc_incoming_call() if there is no
backlog struct. This will cause the incoming call to be aborted. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: prevent A-MSDU attacks in mesh networks
This patch is a mitigation to prevent the A-MSDU spoofing vulnerability
for mesh networks. The initial update to the IEEE 802.11 standard, in
response to the FragAttacks, missed this case (CVE-2025-27558). It can
be considered a variant of CVE-2020-24588 but for mesh networks.
This patch tries to detect if a standard MSDU was turned into an A-MSDU
by an adversary. This is done by parsing a received A-MSDU as a standard
MSDU, calculating the length of the Mesh Control header, and seeing if
the 6 bytes after this header equal the start of an rfc1042 header. If
equal, this is a strong indication of an ongoing attack attempt.
This defense was tested with mac80211_hwsim against a mesh network that
uses an empty Mesh Address Extension field, i.e., when four addresses
are used, and when using a 12-byte Mesh Address Extension field, i.e.,
when six addresses are used. Functionality of normal MSDUs and A-MSDUs
was also tested, and confirmed working, when using both an empty and
12-byte Mesh Address Extension field.
It was also tested with mac80211_hwsim that A-MSDU attacks in non-mesh
networks keep being detected and prevented.
Note that the vulnerability being patched, and the defense being
implemented, was also discussed in the following paper and in the
following IEEE 802.11 presentation:
https://papers.mathyvanhoef.com/wisec2025.pdf
https://mentor.ieee.org/802.11/dcn/25/11-25-0949-00-000m-a-msdu-mesh-spoof-protection.docx |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion when building free space tree
When building the free space tree with the block group tree feature
enabled, we can hit an assertion failure like this:
BTRFS info (device loop0 state M): rebuilding free space tree
assertion failed: ret == 0, in fs/btrfs/free-space-tree.c:1102
------------[ cut here ]------------
kernel BUG at fs/btrfs/free-space-tree.c:1102!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
Modules linked in:
CPU: 1 UID: 0 PID: 6592 Comm: syz-executor322 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102
lr : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102
sp : ffff8000a4ce7600
x29: ffff8000a4ce76e0 x28: ffff0000c9bc6000 x27: ffff0000ddfff3d8
x26: ffff0000ddfff378 x25: dfff800000000000 x24: 0000000000000001
x23: ffff8000a4ce7660 x22: ffff70001499cecc x21: ffff0000e1d8c160
x20: ffff0000e1cb7800 x19: ffff0000e1d8c0b0 x18: 00000000ffffffff
x17: ffff800092f39000 x16: ffff80008ad27e48 x15: ffff700011e740c0
x14: 1ffff00011e740c0 x13: 0000000000000004 x12: ffffffffffffffff
x11: ffff700011e740c0 x10: 0000000000ff0100 x9 : 94ef24f55d2dbc00
x8 : 94ef24f55d2dbc00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff8000a4ce6f98 x4 : ffff80008f415ba0 x3 : ffff800080548ef0
x2 : 0000000000000000 x1 : 0000000100000000 x0 : 000000000000003e
Call trace:
populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 (P)
btrfs_rebuild_free_space_tree+0x14c/0x54c fs/btrfs/free-space-tree.c:1337
btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074
btrfs_remount_rw fs/btrfs/super.c:1319 [inline]
btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543
reconfigure_super+0x1d4/0x6f0 fs/super.c:1083
do_remount fs/namespace.c:3365 [inline]
path_mount+0xb34/0xde0 fs/namespace.c:4200
do_mount fs/namespace.c:4221 [inline]
__do_sys_mount fs/namespace.c:4432 [inline]
__se_sys_mount fs/namespace.c:4409 [inline]
__arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
Code: f0047182 91178042 528089c3 9771d47b (d4210000)
---[ end trace 0000000000000000 ]---
This happens because we are processing an empty block group, which has
no extents allocated from it, there are no items for this block group,
including the block group item since block group items are stored in a
dedicated tree when using the block group tree feature. It also means
this is the block group with the highest start offset, so there are no
higher keys in the extent root, hence btrfs_search_slot_for_read()
returns 1 (no higher key found).
Fix this by asserting 'ret' is 0 only if the block group tree feature
is not enabled, in which case we should find a block group item for
the block group since it's stored in the extent root and block group
item keys are greater than extent item keys (the value for
BTRFS_BLOCK_GROUP_ITEM_KEY is 192 and for BTRFS_EXTENT_ITEM_KEY and
BTRFS_METADATA_ITEM_KEY the values are 168 and 169 respectively).
In case 'ret' is 1, we just need to add a record to the free space
tree which spans the whole block group, and we can achieve this by
making 'ret == 0' as the while loop's condition. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Fix OOB read on empty string write
When writing an empty string to either 'qw_sign' or 'landingPage'
sysfs attributes, the store functions attempt to access page[l - 1]
before validating that the length 'l' is greater than zero.
This patch fixes the vulnerability by adding a check at the beginning
of os_desc_qw_sign_store() and webusb_landingPage_store() to handle
the zero-length input case gracefully by returning immediately. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: ensure the allocated report buffer can contain the reserved report ID
When the report ID is not used, the low level transport drivers expect
the first byte to be 0. However, currently the allocated buffer not
account for that extra byte, meaning that instead of having 8 guaranteed
bytes for implement to be working, we only have 7. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: do not bypass hid_hw_raw_request
hid_hw_raw_request() is actually useful to ensure the provided buffer
and length are valid. Directly calling in the low level transport driver
function bypassed those checks and allowed invalid paramto be used. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gem: Acquire references on GEM handles for framebuffers
A GEM handle can be released while the GEM buffer object is attached
to a DRM framebuffer. This leads to the release of the dma-buf backing
the buffer object, if any. [1] Trying to use the framebuffer in further
mode-setting operations leads to a segmentation fault. Most easily
happens with driver that use shadow planes for vmap-ing the dma-buf
during a page flip. An example is shown below.
[ 156.791968] ------------[ cut here ]------------
[ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430
[...]
[ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430
[ 157.043420] Call Trace:
[ 157.045898] <TASK>
[ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710
[ 157.065567] ? dma_buf_vmap+0x224/0x430
[ 157.069446] ? __warn.cold+0x58/0xe4
[ 157.073061] ? dma_buf_vmap+0x224/0x430
[ 157.077111] ? report_bug+0x1dd/0x390
[ 157.080842] ? handle_bug+0x5e/0xa0
[ 157.084389] ? exc_invalid_op+0x14/0x50
[ 157.088291] ? asm_exc_invalid_op+0x16/0x20
[ 157.092548] ? dma_buf_vmap+0x224/0x430
[ 157.096663] ? dma_resv_get_singleton+0x6d/0x230
[ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10
[ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10
[ 157.110697] drm_gem_shmem_vmap+0x74/0x710
[ 157.114866] drm_gem_vmap+0xa9/0x1b0
[ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0
[ 157.123086] drm_gem_fb_vmap+0xab/0x300
[ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10
[ 157.133032] ? lockdep_init_map_type+0x19d/0x880
[ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0
[ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180
[ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40
[...]
[ 157.346424] ---[ end trace 0000000000000000 ]---
Acquiring GEM handles for the framebuffer's GEM buffer objects prevents
this from happening. The framebuffer's cleanup later puts the handle
references.
Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object
instance") triggers the segmentation fault easily by using the dma-buf
field more widely. The underlying issue with reference counting has
been present before.
v2:
- acquire the handle instead of the BO (Christian)
- fix comment style (Christian)
- drop the Fixes tag (Christian)
- rename err_ gotos
- add missing Link tag |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request
If the request being processed is not a v4 compound request, then
examining the cstate can have undefined results.
This patch adds a check that the rpc procedure being executed
(rq_procinfo) is the NFSPROC4_COMPOUND procedure. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: tegra: check msg length in SMBUS block read
For SMBUS block read, do not continue to read if the message length
passed from the device is '0' or greater than the maximum allowed bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath6kl: remove WARN on bad firmware input
If the firmware gives bad input, that's nothing to do with
the driver's stack at this point etc., so the WARN_ON()
doesn't add any value. Additionally, this is one of the
top syzbot reports now. Just print a message, and as an
added bonus, print the sizes too. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Refuse to evaluate a method if arguments are missing
As reported in [1], a platform firmware update that increased the number
of method parameters and forgot to update a least one of its callers,
caused ACPICA to crash due to use-after-free.
Since this a result of a clear AML issue that arguably cannot be fixed
up by the interpreter (it cannot produce missing data out of thin air),
address it by making ACPICA refuse to evaluate a method if the caller
attempts to pass fewer arguments than expected to it. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: spinand: fix memory leak of ECC engine conf
Memory allocated for the ECC engine conf is not released during spinand
cleanup. Below kmemleak trace is seen for this memory leak:
unreferenced object 0xffffff80064f00e0 (size 8):
comm "swapper/0", pid 1, jiffies 4294937458
hex dump (first 8 bytes):
00 00 00 00 00 00 00 00 ........
backtrace (crc 0):
kmemleak_alloc+0x30/0x40
__kmalloc_cache_noprof+0x208/0x3c0
spinand_ondie_ecc_init_ctx+0x114/0x200
nand_ecc_init_ctx+0x70/0xa8
nanddev_ecc_engine_init+0xec/0x27c
spinand_probe+0xa2c/0x1620
spi_mem_probe+0x130/0x21c
spi_probe+0xf0/0x170
really_probe+0x17c/0x6e8
__driver_probe_device+0x17c/0x21c
driver_probe_device+0x58/0x180
__device_attach_driver+0x15c/0x1f8
bus_for_each_drv+0xec/0x150
__device_attach+0x188/0x24c
device_initial_probe+0x10/0x20
bus_probe_device+0x11c/0x160
Fix the leak by calling nanddev_ecc_engine_cleanup() inside
spinand_cleanup(). |
| In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Fix in_atomic() handling in do_secure_storage_access()
Kernel user spaces accesses to not exported pages in atomic context
incorrectly try to resolve the page fault.
With debug options enabled call traces like this can be seen:
BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1523
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 419074, name: qemu-system-s39
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
INFO: lockdep is turned off.
Preemption disabled at:
[<00000383ea47cfa2>] copy_page_from_iter_atomic+0xa2/0x8a0
CPU: 12 UID: 0 PID: 419074 Comm: qemu-system-s39
Tainted: G W 6.16.0-20250531.rc0.git0.69b3a602feac.63.fc42.s390x+debug #1 PREEMPT
Tainted: [W]=WARN
Hardware name: IBM 3931 A01 703 (LPAR)
Call Trace:
[<00000383e990d282>] dump_stack_lvl+0xa2/0xe8
[<00000383e99bf152>] __might_resched+0x292/0x2d0
[<00000383eaa7c374>] down_read+0x34/0x2d0
[<00000383e99432f8>] do_secure_storage_access+0x108/0x360
[<00000383eaa724b0>] __do_pgm_check+0x130/0x220
[<00000383eaa842e4>] pgm_check_handler+0x114/0x160
[<00000383ea47d028>] copy_page_from_iter_atomic+0x128/0x8a0
([<00000383ea47d016>] copy_page_from_iter_atomic+0x116/0x8a0)
[<00000383e9c45eae>] generic_perform_write+0x16e/0x310
[<00000383e9eb87f4>] ext4_buffered_write_iter+0x84/0x160
[<00000383e9da0de4>] vfs_write+0x1c4/0x460
[<00000383e9da123c>] ksys_write+0x7c/0x100
[<00000383eaa7284e>] __do_syscall+0x15e/0x280
[<00000383eaa8417e>] system_call+0x6e/0x90
INFO: lockdep is turned off.
It is not allowed to take the mmap_lock while in atomic context. Therefore
handle such a secure storage access fault as if the accessed page is not
mapped: the uaccess function will return -EFAULT, and the caller has to
deal with this. Usually this means that the access is retried in process
context, which allows to resolve the page fault (or in this case export the
page). |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: fix acpi operand cache leak in dswstate.c
ACPICA commit 987a3b5cf7175916e2a4b6ea5b8e70f830dfe732
I found an ACPI cache leak in ACPI early termination and boot continuing case.
When early termination occurs due to malicious ACPI table, Linux kernel
terminates ACPI function and continues to boot process. While kernel terminates
ACPI function, kmem_cache_destroy() reports Acpi-Operand cache leak.
Boot log of ACPI operand cache leak is as follows:
>[ 0.585957] ACPI: Added _OSI(Module Device)
>[ 0.587218] ACPI: Added _OSI(Processor Device)
>[ 0.588530] ACPI: Added _OSI(3.0 _SCP Extensions)
>[ 0.589790] ACPI: Added _OSI(Processor Aggregator Device)
>[ 0.591534] ACPI Error: Illegal I/O port address/length above 64K: C806E00000004002/0x2 (20170303/hwvalid-155)
>[ 0.594351] ACPI Exception: AE_LIMIT, Unable to initialize fixed events (20170303/evevent-88)
>[ 0.597858] ACPI: Unable to start the ACPI Interpreter
>[ 0.599162] ACPI Error: Could not remove SCI handler (20170303/evmisc-281)
>[ 0.601836] kmem_cache_destroy Acpi-Operand: Slab cache still has objects
>[ 0.603556] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc5 #26
>[ 0.605159] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006
>[ 0.609177] Call Trace:
>[ 0.610063] ? dump_stack+0x5c/0x81
>[ 0.611118] ? kmem_cache_destroy+0x1aa/0x1c0
>[ 0.612632] ? acpi_sleep_proc_init+0x27/0x27
>[ 0.613906] ? acpi_os_delete_cache+0xa/0x10
>[ 0.617986] ? acpi_ut_delete_caches+0x3f/0x7b
>[ 0.619293] ? acpi_terminate+0xa/0x14
>[ 0.620394] ? acpi_init+0x2af/0x34f
>[ 0.621616] ? __class_create+0x4c/0x80
>[ 0.623412] ? video_setup+0x7f/0x7f
>[ 0.624585] ? acpi_sleep_proc_init+0x27/0x27
>[ 0.625861] ? do_one_initcall+0x4e/0x1a0
>[ 0.627513] ? kernel_init_freeable+0x19e/0x21f
>[ 0.628972] ? rest_init+0x80/0x80
>[ 0.630043] ? kernel_init+0xa/0x100
>[ 0.631084] ? ret_from_fork+0x25/0x30
>[ 0.633343] vgaarb: loaded
>[ 0.635036] EDAC MC: Ver: 3.0.0
>[ 0.638601] PCI: Probing PCI hardware
>[ 0.639833] PCI host bridge to bus 0000:00
>[ 0.641031] pci_bus 0000:00: root bus resource [io 0x0000-0xffff]
> ... Continue to boot and log is omitted ...
I analyzed this memory leak in detail and found acpi_ds_obj_stack_pop_and_
delete() function miscalculated the top of the stack. acpi_ds_obj_stack_push()
function uses walk_state->operand_index for start position of the top, but
acpi_ds_obj_stack_pop_and_delete() function considers index 0 for it.
Therefore, this causes acpi operand memory leak.
This cache leak causes a security threat because an old kernel (<= 4.9) shows
memory locations of kernel functions in stack dump. Some malicious users
could use this information to neutralize kernel ASLR.
I made a patch to fix ACPI operand cache leak. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: fix acpi parse and parseext cache leaks
ACPICA commit 8829e70e1360c81e7a5a901b5d4f48330e021ea5
I'm Seunghun Han, and I work for National Security Research Institute of
South Korea.
I have been doing a research on ACPI and found an ACPI cache leak in ACPI
early abort cases.
Boot log of ACPI cache leak is as follows:
[ 0.352414] ACPI: Added _OSI(Module Device)
[ 0.353182] ACPI: Added _OSI(Processor Device)
[ 0.353182] ACPI: Added _OSI(3.0 _SCP Extensions)
[ 0.353182] ACPI: Added _OSI(Processor Aggregator Device)
[ 0.356028] ACPI: Unable to start the ACPI Interpreter
[ 0.356799] ACPI Error: Could not remove SCI handler (20170303/evmisc-281)
[ 0.360215] kmem_cache_destroy Acpi-State: Slab cache still has objects
[ 0.360648] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W
4.12.0-rc4-next-20170608+ #10
[ 0.361273] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS
virtual_box 12/01/2006
[ 0.361873] Call Trace:
[ 0.362243] ? dump_stack+0x5c/0x81
[ 0.362591] ? kmem_cache_destroy+0x1aa/0x1c0
[ 0.362944] ? acpi_sleep_proc_init+0x27/0x27
[ 0.363296] ? acpi_os_delete_cache+0xa/0x10
[ 0.363646] ? acpi_ut_delete_caches+0x6d/0x7b
[ 0.364000] ? acpi_terminate+0xa/0x14
[ 0.364000] ? acpi_init+0x2af/0x34f
[ 0.364000] ? __class_create+0x4c/0x80
[ 0.364000] ? video_setup+0x7f/0x7f
[ 0.364000] ? acpi_sleep_proc_init+0x27/0x27
[ 0.364000] ? do_one_initcall+0x4e/0x1a0
[ 0.364000] ? kernel_init_freeable+0x189/0x20a
[ 0.364000] ? rest_init+0xc0/0xc0
[ 0.364000] ? kernel_init+0xa/0x100
[ 0.364000] ? ret_from_fork+0x25/0x30
I analyzed this memory leak in detail. I found that “Acpi-State” cache and
“Acpi-Parse” cache were merged because the size of cache objects was same
slab cache size.
I finally found “Acpi-Parse” cache and “Acpi-parse_ext” cache were leaked
using SLAB_NEVER_MERGE flag in kmem_cache_create() function.
Real ACPI cache leak point is as follows:
[ 0.360101] ACPI: Added _OSI(Module Device)
[ 0.360101] ACPI: Added _OSI(Processor Device)
[ 0.360101] ACPI: Added _OSI(3.0 _SCP Extensions)
[ 0.361043] ACPI: Added _OSI(Processor Aggregator Device)
[ 0.364016] ACPI: Unable to start the ACPI Interpreter
[ 0.365061] ACPI Error: Could not remove SCI handler (20170303/evmisc-281)
[ 0.368174] kmem_cache_destroy Acpi-Parse: Slab cache still has objects
[ 0.369332] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W
4.12.0-rc4-next-20170608+ #8
[ 0.371256] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS
virtual_box 12/01/2006
[ 0.372000] Call Trace:
[ 0.372000] ? dump_stack+0x5c/0x81
[ 0.372000] ? kmem_cache_destroy+0x1aa/0x1c0
[ 0.372000] ? acpi_sleep_proc_init+0x27/0x27
[ 0.372000] ? acpi_os_delete_cache+0xa/0x10
[ 0.372000] ? acpi_ut_delete_caches+0x56/0x7b
[ 0.372000] ? acpi_terminate+0xa/0x14
[ 0.372000] ? acpi_init+0x2af/0x34f
[ 0.372000] ? __class_create+0x4c/0x80
[ 0.372000] ? video_setup+0x7f/0x7f
[ 0.372000] ? acpi_sleep_proc_init+0x27/0x27
[ 0.372000] ? do_one_initcall+0x4e/0x1a0
[ 0.372000] ? kernel_init_freeable+0x189/0x20a
[ 0.372000] ? rest_init+0xc0/0xc0
[ 0.372000] ? kernel_init+0xa/0x100
[ 0.372000] ? ret_from_fork+0x25/0x30
[ 0.388039] kmem_cache_destroy Acpi-parse_ext: Slab cache still has objects
[ 0.389063] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W
4.12.0-rc4-next-20170608+ #8
[ 0.390557] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS
virtual_box 12/01/2006
[ 0.392000] Call Trace:
[ 0.392000] ? dump_stack+0x5c/0x81
[ 0.392000] ? kmem_cache_destroy+0x1aa/0x1c0
[ 0.392000] ? acpi_sleep_proc_init+0x27/0x27
[ 0.392000] ? acpi_os_delete_cache+0xa/0x10
[ 0.392000] ? acpi_ut_delete_caches+0x6d/0x7b
[ 0.392000] ? acpi_terminate+0xa/0x14
[ 0.392000] ? acpi_init+0x2af/0x3
---truncated--- |