Search

Search Results (313867 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50541 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: k3-udma: Reset UDMA_CHAN_RT byte counters to prevent overflow UDMA_CHAN_RT_*BCNT_REG stores the real-time channel bytecount statistics. These registers are 32-bit hardware counters and the driver uses these counters to monitor the operational progress status for a channel, when transferring more than 4GB of data it was observed that these counters overflow and completion calculation of a operation gets affected and the transfer hangs indefinitely. This commit adds changes to decrease the byte count for every complete transaction so that these registers never overflow and the proper byte count statistics is maintained for ongoing transaction by the RT counters. Earlier uc->bcnt used to maintain a count of the completed bytes at driver side, since the RT counters maintain the statistics of current transaction now, the maintenance of uc->bcnt is not necessary.
CVE-2022-50536 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix repeated calls to sock_put() when msg has more_data In tcp_bpf_send_verdict() redirection, the eval variable is assigned to __SK_REDIRECT after the apply_bytes data is sent, if msg has more_data, sock_put() will be called multiple times. We should reset the eval variable to __SK_NONE every time more_data starts. This causes: IPv4: Attempt to release TCP socket in state 1 00000000b4c925d7 ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 5 PID: 4482 at lib/refcount.c:25 refcount_warn_saturate+0x7d/0x110 Modules linked in: CPU: 5 PID: 4482 Comm: sockhash_bypass Kdump: loaded Not tainted 6.0.0 #1 Hardware name: Red Hat KVM, BIOS 1.11.0-2.el7 04/01/2014 Call Trace: <TASK> __tcp_transmit_skb+0xa1b/0xb90 ? __alloc_skb+0x8c/0x1a0 ? __kmalloc_node_track_caller+0x184/0x320 tcp_write_xmit+0x22a/0x1110 __tcp_push_pending_frames+0x32/0xf0 do_tcp_sendpages+0x62d/0x640 tcp_bpf_push+0xae/0x2c0 tcp_bpf_sendmsg_redir+0x260/0x410 ? preempt_count_add+0x70/0xa0 tcp_bpf_send_verdict+0x386/0x4b0 tcp_bpf_sendmsg+0x21b/0x3b0 sock_sendmsg+0x58/0x70 __sys_sendto+0xfa/0x170 ? xfd_validate_state+0x1d/0x80 ? switch_fpu_return+0x59/0xe0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50535 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix potential null-deref in dm_resume [Why] Fixing smatch error: dm_resume() error: we previously assumed 'aconnector->dc_link' could be null [How] Check if dc_link null at the beginning of the loop, so further checks can be dropped.
CVE-2022-50534 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dm thin: Use last transaction's pmd->root when commit failed Recently we found a softlock up problem in dm thin pool btree lookup code due to corrupted metadata: Kernel panic - not syncing: softlockup: hung tasks CPU: 7 PID: 2669225 Comm: kworker/u16:3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: dm-thin do_worker [dm_thin_pool] Call Trace: <IRQ> dump_stack+0x9c/0xd3 panic+0x35d/0x6b9 watchdog_timer_fn.cold+0x16/0x25 __run_hrtimer+0xa2/0x2d0 </IRQ> RIP: 0010:__relink_lru+0x102/0x220 [dm_bufio] __bufio_new+0x11f/0x4f0 [dm_bufio] new_read+0xa3/0x1e0 [dm_bufio] dm_bm_read_lock+0x33/0xd0 [dm_persistent_data] ro_step+0x63/0x100 [dm_persistent_data] btree_lookup_raw.constprop.0+0x44/0x220 [dm_persistent_data] dm_btree_lookup+0x16f/0x210 [dm_persistent_data] dm_thin_find_block+0x12c/0x210 [dm_thin_pool] __process_bio_read_only+0xc5/0x400 [dm_thin_pool] process_thin_deferred_bios+0x1a4/0x4a0 [dm_thin_pool] process_one_work+0x3c5/0x730 Following process may generate a broken btree mixed with fresh and stale btree nodes, which could get dm thin trapped in an infinite loop while looking up data block: Transaction 1: pmd->root = A, A->B->C // One path in btree pmd->root = X, X->Y->Z // Copy-up Transaction 2: X,Z is updated on disk, Y write failed. // Commit failed, dm thin becomes read-only. process_bio_read_only dm_thin_find_block __find_block dm_btree_lookup(pmd->root) The pmd->root points to a broken btree, Y may contain stale node pointing to any block, for example X, which gets dm thin trapped into a dead loop while looking up Z. Fix this by setting pmd->root in __open_metadata(), so that dm thin will use the last transaction's pmd->root if commit failed. Fetch a reproducer in [Link]. Linke: https://bugzilla.kernel.org/show_bug.cgi?id=216790
CVE-2022-50533 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: mlme: fix null-ptr deref on failed assoc If association to an AP without a link 0 fails, then we crash in tracing because it assumes that either ap_mld_addr or link 0 BSS is valid, since we clear sdata->vif.valid_links and then don't add the ap_mld_addr to the struct. Since we clear also sdata->vif.cfg.ap_addr, keep a local copy of it and assign it earlier, before clearing valid_links, to fix this.
CVE-2022-50532 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: mpt3sas: Fix possible resource leaks in mpt3sas_transport_port_add() In mpt3sas_transport_port_add(), if sas_rphy_add() returns error, sas_rphy_free() needs be called to free the resource allocated in sas_end_device_alloc(). Otherwise a kernel crash will happen: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108 CPU: 45 PID: 37020 Comm: bash Kdump: loaded Tainted: G W 6.1.0-rc1+ #189 pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : device_del+0x54/0x3d0 lr : device_del+0x37c/0x3d0 Call trace: device_del+0x54/0x3d0 attribute_container_class_device_del+0x28/0x38 transport_remove_classdev+0x6c/0x80 attribute_container_device_trigger+0x108/0x110 transport_remove_device+0x28/0x38 sas_rphy_remove+0x50/0x78 [scsi_transport_sas] sas_port_delete+0x30/0x148 [scsi_transport_sas] do_sas_phy_delete+0x78/0x80 [scsi_transport_sas] device_for_each_child+0x68/0xb0 sas_remove_children+0x30/0x50 [scsi_transport_sas] sas_rphy_remove+0x38/0x78 [scsi_transport_sas] sas_port_delete+0x30/0x148 [scsi_transport_sas] do_sas_phy_delete+0x78/0x80 [scsi_transport_sas] device_for_each_child+0x68/0xb0 sas_remove_children+0x30/0x50 [scsi_transport_sas] sas_remove_host+0x20/0x38 [scsi_transport_sas] scsih_remove+0xd8/0x420 [mpt3sas] Because transport_add_device() is not called when sas_rphy_add() fails, the device is not added. When sas_rphy_remove() is subsequently called to remove the device in the remove() path, a NULL pointer dereference happens.
CVE-2022-50531 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tipc: fix an information leak in tipc_topsrv_kern_subscr Use a 8-byte write to initialize sub.usr_handle in tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized when issuing setsockopt(..., SOL_TIPC, ...). This resulted in an infoleak reported by KMSAN when the packet was received: ===================================================== BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169 instrument_copy_to_user ./include/linux/instrumented.h:121 copyout+0xbc/0x100 lib/iov_iter.c:169 _copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527 copy_to_iter ./include/linux/uio.h:176 simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527 skb_copy_datagram_msg ./include/linux/skbuff.h:3903 packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469 ____sys_recvmsg+0x2c4/0x810 net/socket.c:? ___sys_recvmsg+0x217/0x840 net/socket.c:2743 __sys_recvmsg net/socket.c:2773 __do_sys_recvmsg net/socket.c:2783 __se_sys_recvmsg net/socket.c:2780 __x64_sys_recvmsg+0x364/0x540 net/socket.c:2780 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 ... Uninit was stored to memory at: tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156 tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375 tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084 tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201 __sys_setsockopt+0x87f/0xdc0 net/socket.c:2252 __do_sys_setsockopt net/socket.c:2263 __se_sys_setsockopt net/socket.c:2260 __x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 Local variable sub created at: tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 Bytes 84-87 of 88 are uninitialized Memory access of size 88 starts at ffff88801ed57cd0 Data copied to user address 0000000020000400 ... =====================================================
CVE-2022-50527 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix size validation for non-exclusive domains (v4) Fix amdgpu_bo_validate_size() to check whether the TTM domain manager for the requested memory exists, else we get a kernel oops when dereferencing "man". v2: Make the patch standalone, i.e. not dependent on local patches. v3: Preserve old behaviour and just check that the manager pointer is not NULL. v4: Complain if GTT domain requested and it is uninitialized--most likely a bug.
CVE-2022-50526 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: fix memory corruption with too many bridges Add the missing sanity check on the bridge counter to avoid corrupting data beyond the fixed-sized bridge array in case there are ever more than eight bridges. Patchwork: https://patchwork.freedesktop.org/patch/502664/
CVE-2022-50524 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/mediatek: Check return value after calling platform_get_resource() platform_get_resource() may return NULL pointer, we need check its return value to avoid null-ptr-deref in resource_size().
CVE-2022-50521 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: mxm-wmi: fix memleak in mxm_wmi_call_mx[ds|mx]() The ACPI buffer memory (out.pointer) returned by wmi_evaluate_method() is not freed after the call, so it leads to memory leak. The method results in ACPI buffer is not used, so just pass NULL to wmi_evaluate_method() which fixes the memory leak.
CVE-2022-50519 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure If creation or finalization of a checkpoint fails due to anomalies in the checkpoint metadata on disk, a kernel warning is generated. This patch replaces the WARN_ONs by nilfs_error, so that a kernel, booted with panic_on_warn, does not panic. A nilfs_error is appropriate here to handle the abnormal filesystem condition. This also replaces the detected error codes with an I/O error so that neither of the internal error codes is returned to callers.
CVE-2022-50518 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix locking in pdc_iodc_print() firmware call Utilize pdc_lock spinlock to protect parallel modifications of the iodc_dbuf[] buffer, check length to prevent buffer overflow of iodc_dbuf[], drop the iodc_retbuf[] buffer and fix some wrong indentings.
CVE-2022-50513 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv() In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly released. Besides, considering there are only two error paths and the first one can directly return, so we do not need implicitly jump to the `exit` tag to execute the error handler. So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error path to release the resource and simplified the return logic of rtw_init_cmd_priv(). As there is no proper device to test with, no runtime testing was performed.
CVE-2022-50511 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: lib/fonts: fix undefined behavior in bit shift for get_default_font Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in lib/fonts/fonts.c:139:20 left shift of 1 by 31 places cannot be represented in type 'int' <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c get_default_font+0x1c7/0x1f0 fbcon_startup+0x347/0x3a0 do_take_over_console+0xce/0x270 do_fbcon_takeover+0xa1/0x170 do_fb_registered+0x2a8/0x340 fbcon_fb_registered+0x47/0xe0 register_framebuffer+0x294/0x4a0 __drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper] drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper] drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper] drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper] bochs_pci_probe+0x6ca/0x772 [bochs] local_pci_probe+0x4d/0xb0 pci_device_probe+0x119/0x320 really_probe+0x181/0x550 __driver_probe_device+0xc6/0x220 driver_probe_device+0x32/0x100 __driver_attach+0x195/0x200 bus_for_each_dev+0xbb/0x120 driver_attach+0x27/0x30 bus_add_driver+0x22e/0x2f0 driver_register+0xa9/0x190 __pci_register_driver+0x90/0xa0 bochs_pci_driver_init+0x52/0x1000 [bochs] do_one_initcall+0x76/0x430 do_init_module+0x61/0x28a load_module+0x1f82/0x2e50 __do_sys_finit_module+0xf8/0x190 __x64_sys_finit_module+0x23/0x30 do_syscall_64+0x58/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK>
CVE-2025-6985 1 Langchain-ai 1 Langchain 2025-10-08 7.5 High
The HTMLSectionSplitter class in langchain-text-splitters version 0.3.8 is vulnerable to XML External Entity (XXE) attacks due to unsafe XSLT parsing. This vulnerability arises because the class allows the use of arbitrary XSLT stylesheets, which are parsed using lxml.etree.parse() and lxml.etree.XSLT() without any hardening measures. In lxml versions up to 4.9.x, external entities are resolved by default, allowing attackers to read arbitrary local files or perform outbound HTTP(S) fetches. In lxml versions 5.0 and above, while entity expansion is disabled, the XSLT document() function can still read any URI unless XSLTAccessControl is applied. This vulnerability allows remote attackers to gain read-only access to any file the LangChain process can reach, including sensitive files such as SSH keys, environment files, source code, or cloud metadata. No authentication, special privileges, or user interaction are required, and the issue is exploitable in default deployments that enable custom XSLT.
CVE-2025-61778 1 Akkadotnet 1 Akka.net 2025-10-08 N/A
Akka.NET is a .NET port of the Akka project from the Scala / Java community. In all versions of Akka.Remote from v1.2.0 to v1.5.51, TLS could be enabled via our `akka.remote.dot-netty.tcp` transport and this would correctly enforce private key validation on the server-side of inbound connections. Akka.Remote, however, never asked the outbound-connecting client to present ITS certificate - therefore it's possible for untrusted parties to connect to a private key'd Akka.NET cluster and begin communicating with it without any certificate. The issue here is that for certificate-based authentication to work properly, ensuring that all members of the Akka.Remote network are secured with the same private key, Akka.Remote needed to implement mutual TLS. This was not the case before Akka.NET v1.5.52. Those who run Akka.NET inside a private network that they fully control or who were never using TLS in the first place are now affected by the bug. However, those who use TLS to secure their networks must upgrade to Akka.NET V1.5.52 or later. One patch forces "fail fast" semantics if TLS is enabled but the private key is missing or invalid. Previous versions would only check that once connection attempts occurred. The second patch, a critical fix, enforces mutual TLS (mTLS) by default, so both parties must be keyed using the same certificate. As a workaround, avoid exposing the application publicly to avoid the vulnerability having a practical impact on one's application. However, upgrading to version 1.5.52 is still recommended by the maintainers.
CVE-2025-61765 2 Python, Python-socketio Project 2 Python, Python-socketio 2025-10-08 6.4 Medium
python-socketio is a Python implementation of the Socket.IO realtime client and server. A remote code execution vulnerability in python-socketio versions prior to 5.14.0 allows attackers to execute arbitrary Python code through malicious pickle deserialization in multi-server deployments on which the attacker previously gained access to the message queue that the servers use for internal communications. When Socket.IO servers are configured to use a message queue backend such as Redis for inter-server communication, messages sent between the servers are encoded using the `pickle` Python module. When a server receives one of these messages through the message queue, it assumes it is trusted and immediately deserializes it. The vulnerability stems from deserialization of messages using Python's `pickle.loads()` function. Having previously obtained access to the message queue, the attacker can send a python-socketio server a crafted pickle payload that executes arbitrary code during deserialization via Python's `__reduce__` method. This vulnerability only affects deployments with a compromised message queue. The attack can lead to the attacker executing random code in the context of, and with the privileges of a Socket.IO server process. Single-server systems that do not use a message queue, and multi-server systems with a secure message queue are not vulnerable. In addition to making sure standard security practices are followed in the deployment of the message queue, users of the python-socketio package can upgrade to version 5.14.0 or newer, which remove the `pickle` module and use the much safer JSON encoding for inter-server messaging.
CVE-2025-61687 1 Flowiseai 1 Flowise 2025-10-08 8.3 High
Flowise is a drag & drop user interface to build a customized large language model flow. A file upload vulnerability in version 3.0.7 of FlowiseAI allows authenticated users to upload arbitrary files without proper validation. This enables attackers to persistently store malicious Node.js web shells on the server, potentially leading to Remote Code Execution (RCE). The system fails to validate file extensions, MIME types, or file content during uploads. As a result, malicious scripts such as Node.js-based web shells can be uploaded and stored persistently on the server. These shells expose HTTP endpoints capable of executing arbitrary commands if triggered. The uploaded shell does not automatically execute, but its presence allows future exploitation via administrator error or chained vulnerabilities. This presents a high-severity threat to system integrity and confidentiality. As of time of publication, no known patched versions are available.
CVE-2025-59159 1 Sillytavern 1 Sillytavern 2025-10-08 9.7 Critical
SillyTavern is a locally installed user interface that allows users to interact with text generation large language models, image generation engines, and text-to-speech voice models. In versions prior to 1.13.4, the web user interface for SillyTavern is susceptible to DNS rebinding, allowing attackers to perform actions like install malicious extensions, read chats, inject arbitrary HTML for phishing attacks, etc. The vulnerability has been patched in the version 1.13.4 by introducing a server configuration setting that enables a validation of host names in inbound HTTP requests according to the provided list of allowed hosts: `hostWhitelist.enabled` in config.yaml file or `SILLYTAVERN_HOSTWHITELIST_ENABLED` environment variable. While the setting is disabled by default to honor a wide variety of existing user configurations and maintain backwards compatibility, existing and new users are encouraged to review their server configurations and apply necessary changes to their setup, especially if hosting over the local network while not using SSL.