Search

Search Results (326109 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40178 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pid: Add a judgment for ns null in pid_nr_ns __task_pid_nr_ns ns = task_active_pid_ns(current); pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); if (pid && ns->level <= pid->level) { Sometimes null is returned for task_active_pid_ns. Then it will trigger kernel panic in pid_nr_ns. For example: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058 Mem abort info: ESR = 0x0000000096000007 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x07: level 3 translation fault Data abort info: ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 39-bit VAs, pgdp=00000002175aa000 [0000000000000058] pgd=08000002175ab003, p4d=08000002175ab003, pud=08000002175ab003, pmd=08000002175be003, pte=0000000000000000 pstate: 834000c5 (Nzcv daIF +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : __task_pid_nr_ns+0x74/0xd0 lr : __task_pid_nr_ns+0x24/0xd0 sp : ffffffc08001bd10 x29: ffffffc08001bd10 x28: ffffffd4422b2000 x27: 0000000000000001 x26: ffffffd442821168 x25: ffffffd442821000 x24: 00000f89492eab31 x23: 00000000000000c0 x22: ffffff806f5693c0 x21: ffffff806f5693c0 x20: 0000000000000001 x19: 0000000000000000 x18: 0000000000000000 x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 00000000023a1adc x14: 0000000000000003 x13: 00000000007ef6d8 x12: 001167c391c78800 x11: 00ffffffffffffff x10: 0000000000000000 x9 : 0000000000000001 x8 : ffffff80816fa3c0 x7 : 0000000000000000 x6 : 49534d702d535449 x5 : ffffffc080c4c2c0 x4 : ffffffd43ee128c8 x3 : ffffffd43ee124dc x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffffff806f5693c0 Call trace: __task_pid_nr_ns+0x74/0xd0 ... __handle_irq_event_percpu+0xd4/0x284 handle_irq_event+0x48/0xb0 handle_fasteoi_irq+0x160/0x2d8 generic_handle_domain_irq+0x44/0x60 gic_handle_irq+0x4c/0x114 call_on_irq_stack+0x3c/0x74 do_interrupt_handler+0x4c/0x84 el1_interrupt+0x34/0x58 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x68/0x6c account_kernel_stack+0x60/0x144 exit_task_stack_account+0x1c/0x80 do_exit+0x7e4/0xaf8 ... get_signal+0x7bc/0x8d8 do_notify_resume+0x128/0x828 el0_svc+0x6c/0x70 el0t_64_sync_handler+0x68/0xbc el0t_64_sync+0x1a8/0x1ac Code: 35fffe54 911a02a8 f9400108 b4000128 (b9405a69) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt
CVE-2025-40167 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: detect invalid INLINE_DATA + EXTENTS flag combination syzbot reported a BUG_ON in ext4_es_cache_extent() when opening a verity file on a corrupted ext4 filesystem mounted without a journal. The issue is that the filesystem has an inode with both the INLINE_DATA and EXTENTS flags set: EXT4-fs error (device loop0): ext4_cache_extents:545: inode #15: comm syz.0.17: corrupted extent tree: lblk 0 < prev 66 Investigation revealed that the inode has both flags set: DEBUG: inode 15 - flag=1, i_inline_off=164, has_inline=1, extents_flag=1 This is an invalid combination since an inode should have either: - INLINE_DATA: data stored directly in the inode - EXTENTS: data stored in extent-mapped blocks Having both flags causes ext4_has_inline_data() to return true, skipping extent tree validation in __ext4_iget(). The unvalidated out-of-order extents then trigger a BUG_ON in ext4_es_cache_extent() due to integer underflow when calculating hole sizes. Fix this by detecting this invalid flag combination early in ext4_iget() and rejecting the corrupted inode.
CVE-2025-40160 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xen/events: Return -EEXIST for bound VIRQs Change find_virq() to return -EEXIST when a VIRQ is bound to a different CPU than the one passed in. With that, remove the BUG_ON() from bind_virq_to_irq() to propogate the error upwards. Some VIRQs are per-cpu, but others are per-domain or global. Those must be bound to CPU0 and can then migrate elsewhere. The lookup for per-domain and global will probably fail when migrated off CPU 0, especially when the current CPU is tracked. This now returns -EEXIST instead of BUG_ON(). A second call to bind a per-domain or global VIRQ is not expected, but make it non-fatal to avoid trying to look up the irq, since we don't know which per_cpu(virq_to_irq) it will be in.
CVE-2025-40107 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: hi311x: fix null pointer dereference when resuming from sleep before interface was enabled This issue is similar to the vulnerability in the `mcp251x` driver, which was fixed in commit 03c427147b2d ("can: mcp251x: fix resume from sleep before interface was brought up"). In the `hi311x` driver, when the device resumes from sleep, the driver schedules `priv->restart_work`. However, if the network interface was not previously enabled, the `priv->wq` (workqueue) is not allocated and initialized, leading to a null pointer dereference. To fix this, we move the allocation and initialization of the workqueue from the `hi3110_open` function to the `hi3110_can_probe` function. This ensures that the workqueue is properly initialized before it is used during device resume. And added logic to destroy the workqueue in the error handling paths of `hi3110_can_probe` and in the `hi3110_can_remove` function to prevent resource leaks.
CVE-2025-40106 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: comedi: fix divide-by-zero in comedi_buf_munge() The comedi_buf_munge() function performs a modulo operation `async->munge_chan %= async->cmd.chanlist_len` without first checking if chanlist_len is zero. If a user program submits a command with chanlist_len set to zero, this causes a divide-by-zero error when the device processes data in the interrupt handler path. Add a check for zero chanlist_len at the beginning of the function, similar to the existing checks for !map and CMDF_RAWDATA flag. When chanlist_len is zero, update munge_count and return early, indicating the data was handled without munging. This prevents potential kernel panics from malformed user commands.
CVE-2025-40099 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: parse_dfs_referrals: prevent oob on malformed input Malicious SMB server can send invalid reply to FSCTL_DFS_GET_REFERRALS - reply smaller than sizeof(struct get_dfs_referral_rsp) - reply with number of referrals smaller than NumberOfReferrals in the header Processing of such replies will cause oob. Return -EINVAL error on such replies to prevent oob-s.
CVE-2025-40088 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_strcasecmp() The hfsplus_strcasecmp() logic can trigger the issue: [ 117.317703][ T9855] ================================================================== [ 117.318353][ T9855] BUG: KASAN: slab-out-of-bounds in hfsplus_strcasecmp+0x1bc/0x490 [ 117.318991][ T9855] Read of size 2 at addr ffff88802160f40c by task repro/9855 [ 117.319577][ T9855] [ 117.319773][ T9855] CPU: 0 UID: 0 PID: 9855 Comm: repro Not tainted 6.17.0-rc6 #33 PREEMPT(full) [ 117.319780][ T9855] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 117.319783][ T9855] Call Trace: [ 117.319785][ T9855] <TASK> [ 117.319788][ T9855] dump_stack_lvl+0x1c1/0x2a0 [ 117.319795][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319803][ T9855] ? __pfx_dump_stack_lvl+0x10/0x10 [ 117.319808][ T9855] ? rcu_is_watching+0x15/0xb0 [ 117.319816][ T9855] ? lock_release+0x4b/0x3e0 [ 117.319821][ T9855] ? __kasan_check_byte+0x12/0x40 [ 117.319828][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319835][ T9855] ? __virt_addr_valid+0x4a5/0x5c0 [ 117.319842][ T9855] print_report+0x17e/0x7e0 [ 117.319848][ T9855] ? __virt_addr_valid+0x1c8/0x5c0 [ 117.319855][ T9855] ? __virt_addr_valid+0x4a5/0x5c0 [ 117.319862][ T9855] ? __phys_addr+0xd3/0x180 [ 117.319869][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490 [ 117.319876][ T9855] kasan_report+0x147/0x180 [ 117.319882][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490 [ 117.319891][ T9855] hfsplus_strcasecmp+0x1bc/0x490 [ 117.319900][ T9855] ? __pfx_hfsplus_cat_case_cmp_key+0x10/0x10 [ 117.319906][ T9855] hfs_find_rec_by_key+0xa9/0x1e0 [ 117.319913][ T9855] __hfsplus_brec_find+0x18e/0x470 [ 117.319920][ T9855] ? __pfx_hfsplus_bnode_find+0x10/0x10 [ 117.319926][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10 [ 117.319933][ T9855] ? __pfx___hfsplus_brec_find+0x10/0x10 [ 117.319942][ T9855] hfsplus_brec_find+0x28f/0x510 [ 117.319949][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10 [ 117.319956][ T9855] ? __pfx_hfsplus_brec_find+0x10/0x10 [ 117.319963][ T9855] ? __kmalloc_noprof+0x2a9/0x510 [ 117.319969][ T9855] ? hfsplus_find_init+0x8c/0x1d0 [ 117.319976][ T9855] hfsplus_brec_read+0x2b/0x120 [ 117.319983][ T9855] hfsplus_lookup+0x2aa/0x890 [ 117.319990][ T9855] ? __pfx_hfsplus_lookup+0x10/0x10 [ 117.320003][ T9855] ? d_alloc_parallel+0x2f0/0x15e0 [ 117.320008][ T9855] ? __lock_acquire+0xaec/0xd80 [ 117.320013][ T9855] ? __pfx_d_alloc_parallel+0x10/0x10 [ 117.320019][ T9855] ? __raw_spin_lock_init+0x45/0x100 [ 117.320026][ T9855] ? __init_waitqueue_head+0xa9/0x150 [ 117.320034][ T9855] __lookup_slow+0x297/0x3d0 [ 117.320039][ T9855] ? __pfx___lookup_slow+0x10/0x10 [ 117.320045][ T9855] ? down_read+0x1ad/0x2e0 [ 117.320055][ T9855] lookup_slow+0x53/0x70 [ 117.320065][ T9855] walk_component+0x2f0/0x430 [ 117.320073][ T9855] path_lookupat+0x169/0x440 [ 117.320081][ T9855] filename_lookup+0x212/0x590 [ 117.320089][ T9855] ? __pfx_filename_lookup+0x10/0x10 [ 117.320098][ T9855] ? strncpy_from_user+0x150/0x290 [ 117.320105][ T9855] ? getname_flags+0x1e5/0x540 [ 117.320112][ T9855] user_path_at+0x3a/0x60 [ 117.320117][ T9855] __x64_sys_umount+0xee/0x160 [ 117.320123][ T9855] ? __pfx___x64_sys_umount+0x10/0x10 [ 117.320129][ T9855] ? do_syscall_64+0xb7/0x3a0 [ 117.320135][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320141][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320145][ T9855] do_syscall_64+0xf3/0x3a0 [ 117.320150][ T9855] ? exc_page_fault+0x9f/0xf0 [ 117.320154][ T9855] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 117.320158][ T9855] RIP: 0033:0x7f7dd7908b07 [ 117.320163][ T9855] Code: 23 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 31 f6 e9 09 00 00 00 66 0f 1f 84 00 00 08 [ 117.320167][ T9855] RSP: 002b:00007ffd5ebd9698 EFLAGS: 00000202 ---truncated---
CVE-2025-40083 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: Fix null-deref in agg_dequeue To prevent a potential crash in agg_dequeue (net/sched/sch_qfq.c) when cl->qdisc->ops->peek(cl->qdisc) returns NULL, we check the return value before using it, similar to the existing approach in sch_hfsc.c. To avoid code duplication, the following changes are made: 1. Changed qdisc_warn_nonwc(include/net/pkt_sched.h) into a static inline function. 2. Moved qdisc_peek_len from net/sched/sch_hfsc.c to include/net/pkt_sched.h so that sch_qfq can reuse it. 3. Applied qdisc_peek_len in agg_dequeue to avoid crashing.
CVE-2025-40030 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pinctrl: check the return value of pinmux_ops::get_function_name() While the API contract in docs doesn't specify it explicitly, the generic implementation of the get_function_name() callback from struct pinmux_ops - pinmux_generic_get_function_name() - can fail and return NULL. This is already checked in pinmux_check_ops() so add a similar check in pinmux_func_name_to_selector() instead of passing the returned pointer right down to strcmp() where the NULL can get dereferenced. This is normal operation when adding new pinfunctions.
CVE-2025-40005 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: spi: cadence-quadspi: Implement refcount to handle unbind during busy driver support indirect read and indirect write operation with assumption no force device removal(unbind) operation. However force device removal(removal) is still available to root superuser. Unbinding driver during operation causes kernel crash. This changes ensure driver able to handle such operation for indirect read and indirect write by implementing refcount to track attached devices to the controller and gracefully wait and until attached devices remove operation completed before proceed with removal operation.
CVE-2025-39998 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: target_core_configfs: Add length check to avoid buffer overflow A buffer overflow arises from the usage of snprintf to write into the buffer "buf" in target_lu_gp_members_show function located in /drivers/target/target_core_configfs.c. This buffer is allocated with size LU_GROUP_NAME_BUF (256 bytes). snprintf(...) formats multiple strings into buf with the HBA name (hba->hba_group.cg_item), a slash character, a devicename (dev-> dev_group.cg_item) and a newline character, the total formatted string length may exceed the buffer size of 256 bytes. Since snprintf() returns the total number of bytes that would have been written (the length of %s/%sn ), this value may exceed the buffer length (256 bytes) passed to memcpy(), this will ultimately cause function memcpy reporting a buffer overflow error. An additional check of the return value of snprintf() can avoid this buffer overflow.
CVE-2025-39990 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Check the helper function is valid in get_helper_proto kernel test robot reported verifier bug [1] where the helper func pointer could be NULL due to disabled config option. As Alexei suggested we could check on that in get_helper_proto directly. Marking tail_call helper func with BPF_PTR_POISON, because it is unused by design. [1] https://lore.kernel.org/oe-lkp/202507160818.68358831-lkp@intel.com
CVE-2025-39958 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/s390: Make attach succeed when the device was surprise removed When a PCI device is removed with surprise hotplug, there may still be attempts to attach the device to the default domain as part of tear down via (__iommu_release_dma_ownership()), or because the removal happens during probe (__iommu_probe_device()). In both cases zpci_register_ioat() fails with a cc value indicating that the device handle is invalid. This is because the device is no longer part of the instance as far as the hypervisor is concerned. Currently this leads to an error return and s390_iommu_attach_device() fails. This triggers the WARN_ON() in __iommu_group_set_domain_nofail() because attaching to the default domain must never fail. With the device fenced by the hypervisor no DMAs to or from memory are possible and the IOMMU translations have no effect. Proceed as if the registration was successful and let the hotplug event handling clean up the device. This is similar to how devices in the error state are handled since commit 59bbf596791b ("iommu/s390: Make attach succeed even if the device is in error state") except that for removal the domain will not be registered later. This approach was also previously discussed at the link. Handle both cases, error state and removal, in a helper which checks if the error needs to be propagated or ignored. Avoid magic number condition codes by using the pre-existing, but never used, defines for PCI load/store condition codes and rename them to reflect that they apply to all PCI instructions.
CVE-2025-39952 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: avoid buffer overflow in WID string configuration Fix the following copy overflow warning identified by Smatch checker. drivers/net/wireless/microchip/wilc1000/wlan_cfg.c:184 wilc_wlan_parse_response_frame() error: '__memcpy()' 'cfg->s[i]->str' copy overflow (512 vs 65537) This patch introduces size check before accessing the memory buffer. The checks are base on the WID type of received data from the firmware. For WID string configuration, the size limit is determined by individual element size in 'struct wilc_cfg_str_vals' that is maintained in 'len' field of 'struct wilc_cfg_str'.
CVE-2025-39940 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm-stripe: fix a possible integer overflow There's a possible integer overflow in stripe_io_hints if we have too large chunk size. Test if the overflow happened, and if it did, don't set limits->io_min and limits->io_opt;
CVE-2025-39905 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: phylink: add lock for serializing concurrent pl->phydev writes with resolver Currently phylink_resolve() protects itself against concurrent phylink_bringup_phy() or phylink_disconnect_phy() calls which modify pl->phydev by relying on pl->state_mutex. The problem is that in phylink_resolve(), pl->state_mutex is in a lock inversion state with pl->phydev->lock. So pl->phydev->lock needs to be acquired prior to pl->state_mutex. But that requires dereferencing pl->phydev in the first place, and without pl->state_mutex, that is racy. Hence the reason for the extra lock. Currently it is redundant, but it will serve a functional purpose once mutex_lock(&phy->lock) will be moved outside of the mutex_lock(&pl->state_mutex) section. Another alternative considered would have been to let phylink_resolve() acquire the rtnl_mutex, which is also held when phylink_bringup_phy() and phylink_disconnect_phy() are called. But since phylink_disconnect_phy() runs under rtnl_lock(), it would deadlock with phylink_resolve() when calling flush_work(&pl->resolve). Additionally, it would have been undesirable because it would have unnecessarily blocked many other call paths as well in the entire kernel, so the smaller-scoped lock was preferred.
CVE-2025-39866 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: writeback: fix use-after-free in __mark_inode_dirty() An use-after-free issue occurred when __mark_inode_dirty() get the bdi_writeback that was in the progress of switching. CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1 ...... pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mark_inode_dirty+0x124/0x418 lr : __mark_inode_dirty+0x118/0x418 sp : ffffffc08c9dbbc0 ........ Call trace: __mark_inode_dirty+0x124/0x418 generic_update_time+0x4c/0x60 file_modified+0xcc/0xd0 ext4_buffered_write_iter+0x58/0x124 ext4_file_write_iter+0x54/0x704 vfs_write+0x1c0/0x308 ksys_write+0x74/0x10c __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x40/0xe4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x194/0x198 Root cause is: systemd-random-seed kworker ---------------------------------------------------------------------- ___mark_inode_dirty inode_switch_wbs_work_fn spin_lock(&inode->i_lock); inode_attach_wb locked_inode_to_wb_and_lock_list get inode->i_wb spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock) spin_lock(&inode->i_lock) inode_io_list_move_locked spin_unlock(&wb->list_lock) spin_unlock(&inode->i_lock) spin_lock(&old_wb->list_lock) inode_do_switch_wbs spin_lock(&inode->i_lock) inode->i_wb = new_wb spin_unlock(&inode->i_lock) spin_unlock(&old_wb->list_lock) wb_put_many(old_wb, nr_switched) cgwb_release old wb released wb_wakeup_delayed() accesses wb, then trigger the use-after-free issue Fix this race condition by holding inode spinlock until wb_wakeup_delayed() finished.
CVE-2025-39825 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix race with concurrent opens in rename(2) Besides sending the rename request to the server, the rename process also involves closing any deferred close, waiting for outstanding I/O to complete as well as marking all existing open handles as deleted to prevent them from deferring closes, which increases the race window for potential concurrent opens on the target file. Fix this by unhashing the dentry in advance to prevent any concurrent opens on the target.
CVE-2025-39819 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/smb: Fix inconsistent refcnt update A possible inconsistent update of refcount was identified in `smb2_compound_op`. Such inconsistent update could lead to possible resource leaks. Why it is a possible bug: 1. In the comment section of the function, it clearly states that the reference to `cfile` should be dropped after calling this function. 2. Every control flow path would check and drop the reference to `cfile`, except the patched one. 3. Existing callers would not handle refcount update of `cfile` if -ENOMEM is returned. To fix the bug, an extra goto label "out" is added, to make sure that the cleanup logic would always be respected. As the problem is caused by the allocation failure of `vars`, the cleanup logic between label "finished" and "out" can be safely ignored. According to the definition of function `is_replayable_error`, the error code of "-ENOMEM" is not recoverable. Therefore, the replay logic also gets ignored.
CVE-2025-39801 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: Remove WARN_ON for device endpoint command timeouts This commit addresses a rarely observed endpoint command timeout which causes kernel panic due to warn when 'panic_on_warn' is enabled and unnecessary call trace prints when 'panic_on_warn' is disabled. It is seen during fast software-controlled connect/disconnect testcases. The following is one such endpoint command timeout that we observed: 1. Connect ======= ->dwc3_thread_interrupt ->dwc3_ep0_interrupt ->configfs_composite_setup ->composite_setup ->usb_ep_queue ->dwc3_gadget_ep0_queue ->__dwc3_gadget_ep0_queue ->__dwc3_ep0_do_control_data ->dwc3_send_gadget_ep_cmd 2. Disconnect ========== ->dwc3_thread_interrupt ->dwc3_gadget_disconnect_interrupt ->dwc3_ep0_reset_state ->dwc3_ep0_end_control_data ->dwc3_send_gadget_ep_cmd In the issue scenario, in Exynos platforms, we observed that control transfers for the previous connect have not yet been completed and end transfer command sent as a part of the disconnect sequence and processing of USB_ENDPOINT_HALT feature request from the host timeout. This maybe an expected scenario since the controller is processing EP commands sent as a part of the previous connect. It maybe better to remove WARN_ON in all places where device endpoint commands are sent to avoid unnecessary kernel panic due to warn.