Search

Search Results (326098 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-39825 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix race with concurrent opens in rename(2) Besides sending the rename request to the server, the rename process also involves closing any deferred close, waiting for outstanding I/O to complete as well as marking all existing open handles as deleted to prevent them from deferring closes, which increases the race window for potential concurrent opens on the target file. Fix this by unhashing the dentry in advance to prevent any concurrent opens on the target.
CVE-2025-39819 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/smb: Fix inconsistent refcnt update A possible inconsistent update of refcount was identified in `smb2_compound_op`. Such inconsistent update could lead to possible resource leaks. Why it is a possible bug: 1. In the comment section of the function, it clearly states that the reference to `cfile` should be dropped after calling this function. 2. Every control flow path would check and drop the reference to `cfile`, except the patched one. 3. Existing callers would not handle refcount update of `cfile` if -ENOMEM is returned. To fix the bug, an extra goto label "out" is added, to make sure that the cleanup logic would always be respected. As the problem is caused by the allocation failure of `vars`, the cleanup logic between label "finished" and "out" can be safely ignored. According to the definition of function `is_replayable_error`, the error code of "-ENOMEM" is not recoverable. Therefore, the replay logic also gets ignored.
CVE-2025-39801 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: Remove WARN_ON for device endpoint command timeouts This commit addresses a rarely observed endpoint command timeout which causes kernel panic due to warn when 'panic_on_warn' is enabled and unnecessary call trace prints when 'panic_on_warn' is disabled. It is seen during fast software-controlled connect/disconnect testcases. The following is one such endpoint command timeout that we observed: 1. Connect ======= ->dwc3_thread_interrupt ->dwc3_ep0_interrupt ->configfs_composite_setup ->composite_setup ->usb_ep_queue ->dwc3_gadget_ep0_queue ->__dwc3_gadget_ep0_queue ->__dwc3_ep0_do_control_data ->dwc3_send_gadget_ep_cmd 2. Disconnect ========== ->dwc3_thread_interrupt ->dwc3_gadget_disconnect_interrupt ->dwc3_ep0_reset_state ->dwc3_ep0_end_control_data ->dwc3_send_gadget_ep_cmd In the issue scenario, in Exynos platforms, we observed that control transfers for the previous connect have not yet been completed and end transfer command sent as a part of the disconnect sequence and processing of USB_ENDPOINT_HALT feature request from the host timeout. This maybe an expected scenario since the controller is processing EP commands sent as a part of the previous connect. It maybe better to remove WARN_ON in all places where device endpoint commands are sent to avoid unnecessary kernel panic due to warn.
CVE-2025-39800 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: abort transaction on unexpected eb generation at btrfs_copy_root() If we find an unexpected generation for the extent buffer we are cloning at btrfs_copy_root(), we just WARN_ON() and don't error out and abort the transaction, meaning we allow to persist metadata with an unexpected generation. Instead of warning only, abort the transaction and return -EUCLEAN.
CVE-2025-39797 1 Linux 1 Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: Duplicate SPI Handling The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI Netlink message, which triggers the kernel function xfrm_alloc_spi(). This function is expected to ensure uniqueness of the Security Parameter Index (SPI) for inbound Security Associations (SAs). However, it can return success even when the requested SPI is already in use, leading to duplicate SPIs assigned to multiple inbound SAs, differentiated only by their destination addresses. This behavior causes inconsistencies during SPI lookups for inbound packets. Since the lookup may return an arbitrary SA among those with the same SPI, packet processing can fail, resulting in packet drops. According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA is uniquely identified by the SPI and optionally protocol. Reproducing the Issue Reliably: To consistently reproduce the problem, restrict the available SPI range in charon.conf : spi_min = 0x10000000 spi_max = 0x10000002 This limits the system to only 2 usable SPI values. Next, create more than 2 Child SA. each using unique pair of src/dst address. As soon as the 3rd Child SA is initiated, it will be assigned a duplicate SPI, since the SPI pool is already exhausted. With a narrow SPI range, the issue is consistently reproducible. With a broader/default range, it becomes rare and unpredictable. Current implementation: xfrm_spi_hash() lookup function computes hash using daddr, proto, and family. So if two SAs have the same SPI but different destination addresses, then they will: a. Hash into different buckets b. Be stored in different linked lists (byspi + h) c. Not be seen in the same hlist_for_each_entry_rcu() iteration. As a result, the lookup will result in NULL and kernel allows that Duplicate SPI Proposed Change: xfrm_state_lookup_spi_proto() does a truly global search - across all states, regardless of hash bucket and matches SPI and proto.
CVE-2025-39795 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: avoid possible overflow for chunk_sectors check in blk_stack_limits() In blk_stack_limits(), we check that the t->chunk_sectors value is a multiple of the t->physical_block_size value. However, by finding the chunk_sectors value in bytes, we may overflow the unsigned int which holds chunk_sectors, so change the check to be based on sectors.
CVE-2025-39794 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ARM: tegra: Use I/O memcpy to write to IRAM Kasan crashes the kernel trying to check boundaries when using the normal memcpy.
CVE-2025-39782 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jbd2: prevent softlockup in jbd2_log_do_checkpoint() Both jbd2_log_do_checkpoint() and jbd2_journal_shrink_checkpoint_list() periodically release j_list_lock after processing a batch of buffers to avoid long hold times on the j_list_lock. However, since both functions contend for j_list_lock, the combined time spent waiting and processing can be significant. jbd2_journal_shrink_checkpoint_list() explicitly calls cond_resched() when need_resched() is true to avoid softlockups during prolonged operations. But jbd2_log_do_checkpoint() only exits its loop when need_resched() is true, relying on potentially sleeping functions like __flush_batch() or wait_on_buffer() to trigger rescheduling. If those functions do not sleep, the kernel may hit a softlockup. watchdog: BUG: soft lockup - CPU#3 stuck for 156s! [kworker/u129:2:373] CPU: 3 PID: 373 Comm: kworker/u129:2 Kdump: loaded Not tainted 6.6.0+ #10 Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.27 06/13/2017 Workqueue: writeback wb_workfn (flush-7:2) pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : native_queued_spin_lock_slowpath+0x358/0x418 lr : jbd2_log_do_checkpoint+0x31c/0x438 [jbd2] Call trace: native_queued_spin_lock_slowpath+0x358/0x418 jbd2_log_do_checkpoint+0x31c/0x438 [jbd2] __jbd2_log_wait_for_space+0xfc/0x2f8 [jbd2] add_transaction_credits+0x3bc/0x418 [jbd2] start_this_handle+0xf8/0x560 [jbd2] jbd2__journal_start+0x118/0x228 [jbd2] __ext4_journal_start_sb+0x110/0x188 [ext4] ext4_do_writepages+0x3dc/0x740 [ext4] ext4_writepages+0xa4/0x190 [ext4] do_writepages+0x94/0x228 __writeback_single_inode+0x48/0x318 writeback_sb_inodes+0x204/0x590 __writeback_inodes_wb+0x54/0xf8 wb_writeback+0x2cc/0x3d8 wb_do_writeback+0x2e0/0x2f8 wb_workfn+0x80/0x2a8 process_one_work+0x178/0x3e8 worker_thread+0x234/0x3b8 kthread+0xf0/0x108 ret_from_fork+0x10/0x20 So explicitly call cond_resched() in jbd2_log_do_checkpoint() to avoid softlockup.
CVE-2025-39781 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Drop WARN_ON_ONCE() from flush_cache_vmap I have observed warning to occassionally trigger.
CVE-2025-39763 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered If a synchronous error is detected as a result of user-space process triggering a 2-bit uncorrected error, the CPU will take a synchronous error exception such as Synchronous External Abort (SEA) on Arm64. The kernel will queue a memory_failure() work which poisons the related page, unmaps the page, and then sends a SIGBUS to the process, so that a system wide panic can be avoided. However, no memory_failure() work will be queued when abnormal synchronous errors occur. These errors can include situations like invalid PA, unexpected severity, no memory failure config support, invalid GUID section, etc. In such a case, the user-space process will trigger SEA again. This loop can potentially exceed the platform firmware threshold or even trigger a kernel hard lockup, leading to a system reboot. Fix it by performing a force kill if no memory_failure() work is queued for synchronous errors. [ rjw: Changelog edits ]
CVE-2025-39760 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: core: config: Prevent OOB read in SS endpoint companion parsing usb_parse_ss_endpoint_companion() checks descriptor type before length, enabling a potentially odd read outside of the buffer size. Fix this up by checking the size first before looking at any of the fields in the descriptor.
CVE-2025-39759 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, resulting in a use-after-free. Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config(). Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas were already disabled.
CVE-2025-39749 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rcu: Protect ->defer_qs_iw_pending from data race On kernels built with CONFIG_IRQ_WORK=y, when rcu_read_unlock() is invoked within an interrupts-disabled region of code [1], it will invoke rcu_read_unlock_special(), which uses an irq-work handler to force the system to notice when the RCU read-side critical section actually ends. That end won't happen until interrupts are enabled at the soonest. In some kernels, such as those booted with rcutree.use_softirq=y, the irq-work handler is used unconditionally. The per-CPU rcu_data structure's ->defer_qs_iw_pending field is updated by the irq-work handler and is both read and updated by rcu_read_unlock_special(). This resulted in the following KCSAN splat: ------------------------------------------------------------------------ BUG: KCSAN: data-race in rcu_preempt_deferred_qs_handler / rcu_read_unlock_special read to 0xffff96b95f42d8d8 of 1 bytes by task 90 on cpu 8: rcu_read_unlock_special+0x175/0x260 __rcu_read_unlock+0x92/0xa0 rt_spin_unlock+0x9b/0xc0 __local_bh_enable+0x10d/0x170 __local_bh_enable_ip+0xfb/0x150 rcu_do_batch+0x595/0xc40 rcu_cpu_kthread+0x4e9/0x830 smpboot_thread_fn+0x24d/0x3b0 kthread+0x3bd/0x410 ret_from_fork+0x35/0x40 ret_from_fork_asm+0x1a/0x30 write to 0xffff96b95f42d8d8 of 1 bytes by task 88 on cpu 8: rcu_preempt_deferred_qs_handler+0x1e/0x30 irq_work_single+0xaf/0x160 run_irq_workd+0x91/0xc0 smpboot_thread_fn+0x24d/0x3b0 kthread+0x3bd/0x410 ret_from_fork+0x35/0x40 ret_from_fork_asm+0x1a/0x30 no locks held by irq_work/8/88. irq event stamp: 200272 hardirqs last enabled at (200272): [<ffffffffb0f56121>] finish_task_switch+0x131/0x320 hardirqs last disabled at (200271): [<ffffffffb25c7859>] __schedule+0x129/0xd70 softirqs last enabled at (0): [<ffffffffb0ee093f>] copy_process+0x4df/0x1cc0 softirqs last disabled at (0): [<0000000000000000>] 0x0 ------------------------------------------------------------------------ The problem is that irq-work handlers run with interrupts enabled, which means that rcu_preempt_deferred_qs_handler() could be interrupted, and that interrupt handler might contain an RCU read-side critical section, which might invoke rcu_read_unlock_special(). In the strict KCSAN mode of operation used by RCU, this constitutes a data race on the ->defer_qs_iw_pending field. This commit therefore disables interrupts across the portion of the rcu_preempt_deferred_qs_handler() that updates the ->defer_qs_iw_pending field. This suffices because this handler is not a fast path.
CVE-2025-50053 2026-01-02 7.1 High
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in nebelhorn Blappsta Mobile App Plugin & Your native, mobile iPhone App and Android App allows Reflected XSS.This issue affects Blappsta Mobile App Plugin &#8211; Your native, mobile iPhone App and Android App: from n/a through 0.8.8.8.
CVE-2025-39748 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Forget ranges when refining tnum after JSET Syzbot reported a kernel warning due to a range invariant violation on the following BPF program. 0: call bpf_get_netns_cookie 1: if r0 == 0 goto <exit> 2: if r0 & Oxffffffff goto <exit> The issue is on the path where we fall through both jumps. That path is unreachable at runtime: after insn 1, we know r0 != 0, but with the sign extension on the jset, we would only fallthrough insn 2 if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to figure this out, so the verifier walks all branches. The verifier then refines the register bounds using the second condition and we end up with inconsistent bounds on this unreachable path: 1: if r0 == 0 goto <exit> r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff) 2: if r0 & 0xffffffff goto <exit> r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0) r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0) Improving the range refinement for JSET to cover all cases is tricky. We also don't expect many users to rely on JSET given LLVM doesn't generate those instructions. So instead of improving the range refinement for JSETs, Eduard suggested we forget the ranges whenever we're narrowing tnums after a JSET. This patch implements that approach.
CVE-2025-39745 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture tests resulted in the following splat: [ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0 [ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture] [ 68.797601] Call Trace: [ 68.797602] <TASK> [ 68.797619] ? lockdep_softirqs_off+0xa5/0x160 [ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797646] ? local_clock+0x19/0x40 [ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797815] rcu-torture: rcu_torture_reader task started [ 68.797824] rcu-torture: Creating rcu_torture_reader task [ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c] [ 68.797836] ? kvm_sched_clock_read+0x15/0x30 Disable BH does not change the SOFTIRQ corresponding bits in preempt_count() for RT kernels, this commit therefore use softirq_count() to check the if BH is disabled.
CVE-2025-39744 1 Linux 1 Linux Kernel 2026-01-02 7.1 High
In the Linux kernel, the following vulnerability has been resolved: rcu: Fix rcu_read_unlock() deadloop due to IRQ work During rcu_read_unlock_special(), if this happens during irq_exit(), we can lockup if an IPI is issued. This is because the IPI itself triggers the irq_exit() path causing a recursive lock up. This is precisely what Xiongfeng found when invoking a BPF program on the trace_tick_stop() tracepoint As shown in the trace below. Fix by managing the irq_work state correctly. irq_exit() __irq_exit_rcu() /* in_hardirq() returns false after this */ preempt_count_sub(HARDIRQ_OFFSET) tick_irq_exit() tick_nohz_irq_exit() tick_nohz_stop_sched_tick() trace_tick_stop() /* a bpf prog is hooked on this trace point */ __bpf_trace_tick_stop() bpf_trace_run2() rcu_read_unlock_special() /* will send a IPI to itself */ irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); A simple reproducer can also be obtained by doing the following in tick_irq_exit(). It will hang on boot without the patch: static inline void tick_irq_exit(void) { + rcu_read_lock(); + WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); + rcu_read_unlock(); + [neeraj: Apply Frederic's suggested fix for PREEMPT_RT]
CVE-2025-39743 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: jfs: truncate good inode pages when hard link is 0 The fileset value of the inode copy from the disk by the reproducer is AGGR_RESERVED_I. When executing evict, its hard link number is 0, so its inode pages are not truncated. This causes the bugon to be triggered when executing clear_inode() because nrpages is greater than 0.
CVE-2025-39742 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA: hfi1: fix possible divide-by-zero in find_hw_thread_mask() The function divides number of online CPUs by num_core_siblings, and later checks the divider by zero. This implies a possibility to get and divide-by-zero runtime error. Fix it by moving the check prior to division. This also helps to save one indentation level.
CVE-2025-39738 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not allow relocation of partially dropped subvolumes [BUG] There is an internal report that balance triggered transaction abort, with the following call trace: item 85 key (594509824 169 0) itemoff 12599 itemsize 33 extent refs 1 gen 197740 flags 2 ref#0: tree block backref root 7 item 86 key (594558976 169 0) itemoff 12566 itemsize 33 extent refs 1 gen 197522 flags 2 ref#0: tree block backref root 7 ... BTRFS error (device loop0): extent item not found for insert, bytenr 594526208 num_bytes 16384 parent 449921024 root_objectid 934 owner 1 offset 0 BTRFS error (device loop0): failed to run delayed ref for logical 594526208 num_bytes 16384 type 182 action 1 ref_mod 1: -117 ------------[ cut here ]------------ BTRFS: Transaction aborted (error -117) WARNING: CPU: 1 PID: 6963 at ../fs/btrfs/extent-tree.c:2168 btrfs_run_delayed_refs+0xfa/0x110 [btrfs] And btrfs check doesn't report anything wrong related to the extent tree. [CAUSE] The cause is a little complex, firstly the extent tree indeed doesn't have the backref for 594526208. The extent tree only have the following two backrefs around that bytenr on-disk: item 65 key (594509824 METADATA_ITEM 0) itemoff 13880 itemsize 33 refs 1 gen 197740 flags TREE_BLOCK tree block skinny level 0 (176 0x7) tree block backref root CSUM_TREE item 66 key (594558976 METADATA_ITEM 0) itemoff 13847 itemsize 33 refs 1 gen 197522 flags TREE_BLOCK tree block skinny level 0 (176 0x7) tree block backref root CSUM_TREE But the such missing backref item is not an corruption on disk, as the offending delayed ref belongs to subvolume 934, and that subvolume is being dropped: item 0 key (934 ROOT_ITEM 198229) itemoff 15844 itemsize 439 generation 198229 root_dirid 256 bytenr 10741039104 byte_limit 0 bytes_used 345571328 last_snapshot 198229 flags 0x1000000000001(RDONLY) refs 0 drop_progress key (206324 EXTENT_DATA 2711650304) drop_level 2 level 2 generation_v2 198229 And that offending tree block 594526208 is inside the dropped range of that subvolume. That explains why there is no backref item for that bytenr and why btrfs check is not reporting anything wrong. But this also shows another problem, as btrfs will do all the orphan subvolume cleanup at a read-write mount. So half-dropped subvolume should not exist after an RW mount, and balance itself is also exclusive to subvolume cleanup, meaning we shouldn't hit a subvolume half-dropped during relocation. The root cause is, there is no orphan item for this subvolume. In fact there are 5 subvolumes from around 2021 that have the same problem. It looks like the original report has some older kernels running, and caused those zombie subvolumes. Thankfully upstream commit 8d488a8c7ba2 ("btrfs: fix subvolume/snapshot deletion not triggered on mount") has long fixed the bug. [ENHANCEMENT] For repairing such old fs, btrfs-progs will be enhanced. Considering how delayed the problem will show up (at run delayed ref time) and at that time we have to abort transaction already, it is too late. Instead here we reject any half-dropped subvolume for reloc tree at the earliest time, preventing confusion and extra time wasted on debugging similar bugs.