Search

Search Results (326086 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38691 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pNFS: Fix uninited ptr deref in block/scsi layout The error occurs on the third attempt to encode extents. When function ext_tree_prepare_commit() reallocates a larger buffer to retry encoding extents, the "layoutupdate_pages" page array is initialized only after the retry loop. But ext_tree_free_commitdata() is called on every iteration and tries to put pages in the array, thus dereferencing uninitialized pointers. An additional problem is that there is no limit on the maximum possible buffer_size. When there are too many extents, the client may create a layoutcommit that is larger than the maximum possible RPC size accepted by the server. During testing, we observed two typical scenarios. First, one memory page for extents is enough when we work with small files, append data to the end of the file, or preallocate extents before writing. But when we fill a new large file without preallocating, the number of extents can be huge, and counting the number of written extents in ext_tree_encode_commit() does not help much. Since this number increases even more between unlocking and locking of ext_tree, the reallocated buffer may not be large enough again and again.
CVE-2025-38685 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fbdev: Fix vmalloc out-of-bounds write in fast_imageblit This issue triggers when a userspace program does an ioctl FBIOPUT_CON2FBMAP by passing console number and frame buffer number. Ideally this maps console to frame buffer and updates the screen if console is visible. As part of mapping it has to do resize of console according to frame buffer info. if this resize fails and returns from vc_do_resize() and continues further. At this point console and new frame buffer are mapped and sets display vars. Despite failure still it continue to proceed updating the screen at later stages where vc_data is related to previous frame buffer and frame buffer info and display vars are mapped to new frame buffer and eventully leading to out-of-bounds write in fast_imageblit(). This bheviour is excepted only when fg_console is equal to requested console which is a visible console and updates screen with invalid struct references in fbcon_putcs().
CVE-2025-14986 2026-01-02 N/A
When frontend.enableExecuteMultiOperation is enabled, the server can apply namespace-scoped validation and feature gates for the embedded StartWorkflowExecutionRequest using its Namespace field rather than the outer, authorized ExecuteMultiOperationRequest.Namespace. This allows a caller authorized for one namespace to bypass that namespace's limits/policies by setting the embedded start request's namespace to a different namespace. The workflow is still created in the outer (authorized) namespace; only validation/gating is performed under the wrong namespace context. This issue affects Temporal: from 1.24.0 through 1.29.1. Fixed in 1.27.4, 1.28.2, 1.29.2.
CVE-2025-38668 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix NULL dereference on unbind due to stale coupling data Failing to reset coupling_desc.n_coupled after freeing coupled_rdevs can lead to NULL pointer dereference when regulators are accessed post-unbind. This can happen during runtime PM or other regulator operations that rely on coupling metadata. For example, on ridesx4, unbinding the 'reg-dummy' platform device triggers a panic in regulator_lock_recursive() due to stale coupling state. Ensure n_coupled is set to 0 to prevent access to invalid pointers.
CVE-2025-38624 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: pnv_php: Clean up allocated IRQs on unplug When the root of a nested PCIe bridge configuration is unplugged, the pnv_php driver leaked the allocated IRQ resources for the child bridges' hotplug event notifications, resulting in a panic. Fix this by walking all child buses and deallocating all its IRQ resources before calling pci_hp_remove_devices(). Also modify the lifetime of the workqueue at struct pnv_php_slot::wq so that it is only destroyed in pnv_php_free_slot(), instead of pnv_php_disable_irq(). This is required since pnv_php_disable_irq() will now be called by workers triggered by hot unplug interrupts, so the workqueue needs to stay allocated. The abridged kernel panic that occurs without this patch is as follows: WARNING: CPU: 0 PID: 687 at kernel/irq/msi.c:292 msi_device_data_release+0x6c/0x9c CPU: 0 UID: 0 PID: 687 Comm: bash Not tainted 6.14.0-rc5+ #2 Call Trace: msi_device_data_release+0x34/0x9c (unreliable) release_nodes+0x64/0x13c devres_release_all+0xc0/0x140 device_del+0x2d4/0x46c pci_destroy_dev+0x5c/0x194 pci_hp_remove_devices+0x90/0x128 pci_hp_remove_devices+0x44/0x128 pnv_php_disable_slot+0x54/0xd4 power_write_file+0xf8/0x18c pci_slot_attr_store+0x40/0x5c sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x3bc/0x50c ksys_write+0x84/0x140 system_call_exception+0x124/0x230 system_call_vectored_common+0x15c/0x2ec [bhelgaas: tidy comments]
CVE-2025-38623 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI: pnv_php: Fix surprise plug detection and recovery The existing PowerNV hotplug code did not handle surprise plug events correctly, leading to a complete failure of the hotplug system after device removal and a required reboot to detect new devices. This comes down to two issues: 1) When a device is surprise removed, often the bridge upstream port will cause a PE freeze on the PHB. If this freeze is not cleared, the MSI interrupts from the bridge hotplug notification logic will not be received by the kernel, stalling all plug events on all slots associated with the PE. 2) When a device is removed from a slot, regardless of surprise or programmatic removal, the associated PHB/PE ls left frozen. If this freeze is not cleared via a fundamental reset, skiboot is unable to clear the freeze and cannot retrain / rescan the slot. This also requires a reboot to clear the freeze and redetect the device in the slot. Issue the appropriate unfreeze and rescan commands on hotplug events, and don't oops on hotplug if pci_bus_to_OF_node() returns NULL. [bhelgaas: tidy comments]
CVE-2025-38576 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/eeh: Make EEH driver device hotplug safe Multiple race conditions existed between the PCIe hotplug driver and the EEH driver, leading to a variety of kernel oopses of the same general nature: <pcie device unplug> <eeh driver trigger> <hotplug removal trigger> <pcie tree reconfiguration> <eeh recovery next step> <oops in EEH driver bus iteration loop> A second class of oops is also seen when the underlying bus disappears during device recovery. Refactor the EEH module to be PCI rescan and remove safe. Also clean up a few minor formatting / readability issues.
CVE-2025-38560 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/sev: Evict cache lines during SNP memory validation An SNP cache coherency vulnerability requires a cache line eviction mitigation when validating memory after a page state change to private. The specific mitigation is to touch the first and last byte of each 4K page that is being validated. There is no need to perform the mitigation when performing a page state change to shared and rescinding validation. CPUID bit Fn8000001F_EBX[31] defines the COHERENCY_SFW_NO CPUID bit that, when set, indicates that the software mitigation for this vulnerability is not needed. Implement the mitigation and invoke it when validating memory (making it private) and the COHERENCY_SFW_NO bit is not set, indicating the SNP guest is vulnerable.
CVE-2025-38540 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: quirks: Add quirk for 2 Chicony Electronics HP 5MP Cameras The Chicony Electronics HP 5MP Cameras (USB ID 04F2:B824 & 04F2:B82C) report a HID sensor interface that is not actually implemented. Attempting to access this non-functional sensor via iio_info causes system hangs as runtime PM tries to wake up an unresponsive sensor. Add these 2 devices to the HID ignore list since the sensor interface is non-functional by design and should not be exposed to userspace.
CVE-2025-38531 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iio: common: st_sensors: Fix use of uninitialize device structs Throughout the various probe functions &indio_dev->dev is used before it is initialized. This caused a kernel panic in st_sensors_power_enable() when the call to devm_regulator_bulk_get_enable() fails and then calls dev_err_probe() with the uninitialized device. This seems to only cause a panic with dev_err_probe(), dev_err(), dev_warn() and dev_info() don't seem to cause a panic, but are fixed as well. The issue is reported and traced here: [1]
CVE-2025-38514 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix oops due to non-existence of prealloc backlog struct If an AF_RXRPC service socket is opened and bound, but calls are preallocated, then rxrpc_alloc_incoming_call() will oops because the rxrpc_backlog struct doesn't get allocated until the first preallocation is made. Fix this by returning NULL from rxrpc_alloc_incoming_call() if there is no backlog struct. This will cause the incoming call to be aborted.
CVE-2025-38512 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: prevent A-MSDU attacks in mesh networks This patch is a mitigation to prevent the A-MSDU spoofing vulnerability for mesh networks. The initial update to the IEEE 802.11 standard, in response to the FragAttacks, missed this case (CVE-2025-27558). It can be considered a variant of CVE-2020-24588 but for mesh networks. This patch tries to detect if a standard MSDU was turned into an A-MSDU by an adversary. This is done by parsing a received A-MSDU as a standard MSDU, calculating the length of the Mesh Control header, and seeing if the 6 bytes after this header equal the start of an rfc1042 header. If equal, this is a strong indication of an ongoing attack attempt. This defense was tested with mac80211_hwsim against a mesh network that uses an empty Mesh Address Extension field, i.e., when four addresses are used, and when using a 12-byte Mesh Address Extension field, i.e., when six addresses are used. Functionality of normal MSDUs and A-MSDUs was also tested, and confirmed working, when using both an empty and 12-byte Mesh Address Extension field. It was also tested with mac80211_hwsim that A-MSDU attacks in non-mesh networks keep being detected and prevented. Note that the vulnerability being patched, and the defense being implemented, was also discussed in the following paper and in the following IEEE 802.11 presentation: https://papers.mathyvanhoef.com/wisec2025.pdf https://mentor.ieee.org/802.11/dcn/25/11-25-0949-00-000m-a-msdu-mesh-spoof-protection.docx
CVE-2025-38503 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion when building free space tree When building the free space tree with the block group tree feature enabled, we can hit an assertion failure like this: BTRFS info (device loop0 state M): rebuilding free space tree assertion failed: ret == 0, in fs/btrfs/free-space-tree.c:1102 ------------[ cut here ]------------ kernel BUG at fs/btrfs/free-space-tree.c:1102! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Modules linked in: CPU: 1 UID: 0 PID: 6592 Comm: syz-executor322 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 lr : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 sp : ffff8000a4ce7600 x29: ffff8000a4ce76e0 x28: ffff0000c9bc6000 x27: ffff0000ddfff3d8 x26: ffff0000ddfff378 x25: dfff800000000000 x24: 0000000000000001 x23: ffff8000a4ce7660 x22: ffff70001499cecc x21: ffff0000e1d8c160 x20: ffff0000e1cb7800 x19: ffff0000e1d8c0b0 x18: 00000000ffffffff x17: ffff800092f39000 x16: ffff80008ad27e48 x15: ffff700011e740c0 x14: 1ffff00011e740c0 x13: 0000000000000004 x12: ffffffffffffffff x11: ffff700011e740c0 x10: 0000000000ff0100 x9 : 94ef24f55d2dbc00 x8 : 94ef24f55d2dbc00 x7 : 0000000000000001 x6 : 0000000000000001 x5 : ffff8000a4ce6f98 x4 : ffff80008f415ba0 x3 : ffff800080548ef0 x2 : 0000000000000000 x1 : 0000000100000000 x0 : 000000000000003e Call trace: populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 (P) btrfs_rebuild_free_space_tree+0x14c/0x54c fs/btrfs/free-space-tree.c:1337 btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074 btrfs_remount_rw fs/btrfs/super.c:1319 [inline] btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543 reconfigure_super+0x1d4/0x6f0 fs/super.c:1083 do_remount fs/namespace.c:3365 [inline] path_mount+0xb34/0xde0 fs/namespace.c:4200 do_mount fs/namespace.c:4221 [inline] __do_sys_mount fs/namespace.c:4432 [inline] __se_sys_mount fs/namespace.c:4409 [inline] __arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 Code: f0047182 91178042 528089c3 9771d47b (d4210000) ---[ end trace 0000000000000000 ]--- This happens because we are processing an empty block group, which has no extents allocated from it, there are no items for this block group, including the block group item since block group items are stored in a dedicated tree when using the block group tree feature. It also means this is the block group with the highest start offset, so there are no higher keys in the extent root, hence btrfs_search_slot_for_read() returns 1 (no higher key found). Fix this by asserting 'ret' is 0 only if the block group tree feature is not enabled, in which case we should find a block group item for the block group since it's stored in the extent root and block group item keys are greater than extent item keys (the value for BTRFS_BLOCK_GROUP_ITEM_KEY is 192 and for BTRFS_EXTENT_ITEM_KEY and BTRFS_METADATA_ITEM_KEY the values are 168 and 169 respectively). In case 'ret' is 1, we just need to add a record to the free space tree which spans the whole block group, and we can achieve this by making 'ret == 0' as the while loop's condition.
CVE-2025-38497 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: configfs: Fix OOB read on empty string write When writing an empty string to either 'qw_sign' or 'landingPage' sysfs attributes, the store functions attempt to access page[l - 1] before validating that the length 'l' is greater than zero. This patch fixes the vulnerability by adding a check at the beginning of os_desc_qw_sign_store() and webusb_landingPage_store() to handle the zero-length input case gracefully by returning immediately.
CVE-2025-38495 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: ensure the allocated report buffer can contain the reserved report ID When the report ID is not used, the low level transport drivers expect the first byte to be 0. However, currently the allocated buffer not account for that extra byte, meaning that instead of having 8 guaranteed bytes for implement to be working, we only have 7.
CVE-2025-38494 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: do not bypass hid_hw_raw_request hid_hw_raw_request() is actually useful to ensure the provided buffer and length are valid. Directly calling in the low level transport driver function bypassed those checks and allowed invalid paramto be used.
CVE-2025-38449 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/gem: Acquire references on GEM handles for framebuffers A GEM handle can be released while the GEM buffer object is attached to a DRM framebuffer. This leads to the release of the dma-buf backing the buffer object, if any. [1] Trying to use the framebuffer in further mode-setting operations leads to a segmentation fault. Most easily happens with driver that use shadow planes for vmap-ing the dma-buf during a page flip. An example is shown below. [ 156.791968] ------------[ cut here ]------------ [ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430 [...] [ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430 [ 157.043420] Call Trace: [ 157.045898] <TASK> [ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0 [ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0 [ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0 [ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710 [ 157.065567] ? dma_buf_vmap+0x224/0x430 [ 157.069446] ? __warn.cold+0x58/0xe4 [ 157.073061] ? dma_buf_vmap+0x224/0x430 [ 157.077111] ? report_bug+0x1dd/0x390 [ 157.080842] ? handle_bug+0x5e/0xa0 [ 157.084389] ? exc_invalid_op+0x14/0x50 [ 157.088291] ? asm_exc_invalid_op+0x16/0x20 [ 157.092548] ? dma_buf_vmap+0x224/0x430 [ 157.096663] ? dma_resv_get_singleton+0x6d/0x230 [ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10 [ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10 [ 157.110697] drm_gem_shmem_vmap+0x74/0x710 [ 157.114866] drm_gem_vmap+0xa9/0x1b0 [ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0 [ 157.123086] drm_gem_fb_vmap+0xab/0x300 [ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10 [ 157.133032] ? lockdep_init_map_type+0x19d/0x880 [ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0 [ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180 [ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40 [...] [ 157.346424] ---[ end trace 0000000000000000 ]--- Acquiring GEM handles for the framebuffer's GEM buffer objects prevents this from happening. The framebuffer's cleanup later puts the handle references. Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object instance") triggers the segmentation fault easily by using the dma-buf field more widely. The underlying issue with reference counting has been present before. v2: - acquire the handle instead of the BO (Christian) - fix comment style (Christian) - drop the Fixes tag (Christian) - rename err_ gotos - add missing Link tag
CVE-2025-38430 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request If the request being processed is not a v4 compound request, then examining the cstate can have undefined results. This patch adds a check that the rpc procedure being executed (rq_procinfo) is the NFSPROC4_COMPOUND procedure.
CVE-2025-38425 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: check msg length in SMBUS block read For SMBUS block read, do not continue to read if the message length passed from the device is '0' or greater than the maximum allowed bytes.
CVE-2025-38406 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: remove WARN on bad firmware input If the firmware gives bad input, that's nothing to do with the driver's stack at this point etc., so the WARN_ON() doesn't add any value. Additionally, this is one of the top syzbot reports now. Just print a message, and as an added bonus, print the sizes too.