| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Avoid NULL pointer deref for evicted BOs
It is possible for a BO to exist that is not currently associated with a
resource, e.g. because it has been evicted.
When devcoredump tries to read the contents of all BOs for dumping, we need
to expect this as well -- in this case, ENODATA is recorded instead of the
buffer contents. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT
On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the
current task can be preempted. Another task running on the same CPU
may then execute rt6_make_pcpu_route() and successfully install a
pcpu_rt entry. When the first task resumes execution, its cmpxchg()
in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer
NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding
mdelay() after rt6_get_pcpu_route().
Using preempt_disable/enable is not appropriate here because
ip6_rt_pcpu_alloc() may sleep.
Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT:
free our allocation and return the existing pcpu_rt installed by
another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT
kernels where such races should not occur. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Cap the number of PCR banks
tpm2_get_pcr_allocation() does not cap any upper limit for the number of
banks. Cap the limit to eight banks so that out of bounds values coming
from external I/O cause on only limited harm. |
| In the Linux kernel, the following vulnerability has been resolved:
shmem: fix recovery on rename failures
maple_tree insertions can fail if we are seriously short on memory;
simple_offset_rename() does not recover well if it runs into that.
The same goes for simple_offset_rename_exchange().
Moreover, shmem_whiteout() expects that if it succeeds, the caller will
progress to d_move(), i.e. that shmem_rename2() won't fail past the
successful call of shmem_whiteout().
Not hard to fix, fortunately - mtree_store() can't fail if the index we
are trying to store into is already present in the tree as a singleton.
For simple_offset_rename_exchange() that's enough - we just need to be
careful about the order of operations.
For simple_offset_rename() solution is to preinsert the target into the
tree for new_dir; the rest can be done without any potentially failing
operations.
That preinsertion has to be done in shmem_rename2() rather than in
simple_offset_rename() itself - otherwise we'd need to deal with the
possibility of failure after successful shmem_whiteout(). |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: clean up user copy references on ublk server exit
If a ublk server process releases a ublk char device file, any requests
dispatched to the ublk server but not yet completed will retain a ref
value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify
aborting ublk request"), __ublk_fail_req() would decrement the reference
count before completing the failed request. However, that commit
optimized __ublk_fail_req() to call __ublk_complete_rq() directly
without decrementing the request reference count.
The leaked reference count incorrectly allows user copy and zero copy
operations on the completed ublk request. It also triggers the
WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit()
and ublk_deinit_queue().
Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk
char dev is closed") already fixed the issue for ublk devices using
UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference
count leak also affects UBLK_F_USER_COPY, the other reference-counted
data copy mode. Fix the condition in ublk_check_and_reset_active_ref()
to include all reference-counted data copy modes. This ensures that any
ublk requests still owned by the ublk server when it exits have their
reference counts reset to 0. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs: set dummy blocksize to read boot_block when mounting
When mounting, sb->s_blocksize is used to read the boot_block without
being defined or validated. Set a dummy blocksize before attempting to
read the boot_block.
The issue can be triggered with the following syz reproducer:
mkdirat(0xffffffffffffff9c, &(0x7f0000000080)='./file1\x00', 0x0)
r4 = openat$nullb(0xffffffffffffff9c, &(0x7f0000000040), 0x121403, 0x0)
ioctl$FS_IOC_SETFLAGS(r4, 0x40081271, &(0x7f0000000980)=0x4000)
mount(&(0x7f0000000140)=@nullb, &(0x7f0000000040)='./cgroup\x00',
&(0x7f0000000000)='ntfs3\x00', 0x2208004, 0x0)
syz_clone(0x88200200, 0x0, 0x0, 0x0, 0x0, 0x0)
Here, the ioctl sets the bdev block size to 16384. During mount,
get_tree_bdev_flags() calls sb_set_blocksize(sb, block_size(bdev)),
but since block_size(bdev) > PAGE_SIZE, sb_set_blocksize() leaves
sb->s_blocksize at zero.
Later, ntfs_init_from_boot() attempts to read the boot_block while
sb->s_blocksize is still zero, which triggers the bug.
[almaz.alexandrovich@paragon-software.com: changed comment style, added
return value handling] |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix deadlock when reading partition table
When one process(such as udev) opens ublk block device (e.g., to read
the partition table via bdev_open()), a deadlock[1] can occur:
1. bdev_open() grabs disk->open_mutex
2. The process issues read I/O to ublk backend to read partition table
3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request()
runs bio->bi_end_io() callbacks
4. If this triggers fput() on file descriptor of ublk block device, the
work may be deferred to current task's task work (see fput() implementation)
5. This eventually calls blkdev_release() from the same context
6. blkdev_release() tries to grab disk->open_mutex again
7. Deadlock: same task waiting for a mutex it already holds
The fix is to run blk_update_request() and blk_mq_end_request() with bottom
halves disabled. This forces blkdev_release() to run in kernel work-queue
context instead of current task work context, and allows ublk server to make
forward progress, and avoids the deadlock.
[axboe: rewrite comment in ublk] |
| In the Linux kernel, the following vulnerability has been resolved:
Input: alps - fix use-after-free bugs caused by dev3_register_work
The dev3_register_work delayed work item is initialized within
alps_reconnect() and scheduled upon receipt of the first bare
PS/2 packet from an external PS/2 device connected to the ALPS
touchpad. During device detachment, the original implementation
calls flush_workqueue() in psmouse_disconnect() to ensure
completion of dev3_register_work. However, the flush_workqueue()
in psmouse_disconnect() only blocks and waits for work items that
were already queued to the workqueue prior to its invocation. Any
work items submitted after flush_workqueue() is called are not
included in the set of tasks that the flush operation awaits.
This means that after flush_workqueue() has finished executing,
the dev3_register_work could still be scheduled. Although the
psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(),
the scheduling of dev3_register_work remains unaffected.
The race condition can occur as follows:
CPU 0 (cleanup path) | CPU 1 (delayed work)
psmouse_disconnect() |
psmouse_set_state() |
flush_workqueue() | alps_report_bare_ps2_packet()
alps_disconnect() | psmouse_queue_work()
kfree(priv); // FREE | alps_register_bare_ps2_mouse()
| priv = container_of(work...); // USE
| priv->dev3 // USE
Add disable_delayed_work_sync() in alps_disconnect() to ensure
that dev3_register_work is properly canceled and prevented from
executing after the alps_data structure has been deallocated.
This bug is identified by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix filename leak in __io_openat_prep()
__io_openat_prep() allocates a struct filename using getname(). However,
for the condition of the file being installed in the fixed file table as
well as having O_CLOEXEC flag set, the function returns early. At that
point, the request doesn't have REQ_F_NEED_CLEANUP flag set. Due to this,
the memory for the newly allocated struct filename is not cleaned up,
causing a memory leak.
Fix this by setting the REQ_F_NEED_CLEANUP for the request just after the
successful getname() call, so that when the request is torn down, the
filename will be cleaned up, along with other resources needing cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix ipv4 null-ptr-deref in route error path
The IPv4 code path in __ip_vs_get_out_rt() calls dst_link_failure()
without ensuring skb->dev is set, leading to a NULL pointer dereference
in fib_compute_spec_dst() when ipv4_link_failure() attempts to send
ICMP destination unreachable messages.
The issue emerged after commit ed0de45a1008 ("ipv4: recompile ip options
in ipv4_link_failure") started calling __ip_options_compile() from
ipv4_link_failure(). This code path eventually calls fib_compute_spec_dst()
which dereferences skb->dev. An attempt was made to fix the NULL skb->dev
dereference in commit 0113d9c9d1cc ("ipv4: fix null-deref in
ipv4_link_failure"), but it only addressed the immediate dev_net(skb->dev)
dereference by using a fallback device. The fix was incomplete because
fib_compute_spec_dst() later in the call chain still accesses skb->dev
directly, which remains NULL when IPVS calls dst_link_failure().
The crash occurs when:
1. IPVS processes a packet in NAT mode with a misconfigured destination
2. Route lookup fails in __ip_vs_get_out_rt() before establishing a route
3. The error path calls dst_link_failure(skb) with skb->dev == NULL
4. ipv4_link_failure() → ipv4_send_dest_unreach() →
__ip_options_compile() → fib_compute_spec_dst()
5. fib_compute_spec_dst() dereferences NULL skb->dev
Apply the same fix used for IPv6 in commit 326bf17ea5d4 ("ipvs: fix
ipv6 route unreach panic"): set skb->dev from skb_dst(skb)->dev before
calling dst_link_failure().
KASAN: null-ptr-deref in range [0x0000000000000328-0x000000000000032f]
CPU: 1 PID: 12732 Comm: syz.1.3469 Not tainted 6.6.114 #2
RIP: 0010:__in_dev_get_rcu include/linux/inetdevice.h:233
RIP: 0010:fib_compute_spec_dst+0x17a/0x9f0 net/ipv4/fib_frontend.c:285
Call Trace:
<TASK>
spec_dst_fill net/ipv4/ip_options.c:232
spec_dst_fill net/ipv4/ip_options.c:229
__ip_options_compile+0x13a1/0x17d0 net/ipv4/ip_options.c:330
ipv4_send_dest_unreach net/ipv4/route.c:1252
ipv4_link_failure+0x702/0xb80 net/ipv4/route.c:1265
dst_link_failure include/net/dst.h:437
__ip_vs_get_out_rt+0x15fd/0x19e0 net/netfilter/ipvs/ip_vs_xmit.c:412
ip_vs_nat_xmit+0x1d8/0xc80 net/netfilter/ipvs/ip_vs_xmit.c:764 |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: Add sanity check for stop streaming
Add sanity check in iris_vb2_stop_streaming. If inst->state is
already IRIS_INST_ERROR, we should skip the stream_off operation
because it would still send packets to the firmware.
In iris_kill_session, inst->state is set to IRIS_INST_ERROR and
session_close is executed, which will kfree(inst_hfi_gen2->packet).
If stop_streaming is called afterward, it will cause a crash.
[bod: remove qcom from patch title] |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: vfs: fix race on m_flags in vfs_cache
ksmbd maintains delete-on-close and pending-delete state in
ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under
inconsistent locking: some paths read and modify m_flags under
ci->m_lock while others do so without taking the lock at all.
Examples:
- ksmbd_query_inode_status() and __ksmbd_inode_close() use
ci->m_lock when checking or updating m_flags.
- ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(),
ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close()
used to read and modify m_flags without ci->m_lock.
This creates a potential data race on m_flags when multiple threads
open, close and delete the same file concurrently. In the worst case
delete-on-close and pending-delete bits can be lost or observed in an
inconsistent state, leading to confusing delete semantics (files that
stay on disk after delete-on-close, or files that disappear while still
in use).
Fix it by:
- Making ksmbd_query_inode_status() look at m_flags under ci->m_lock
after dropping inode_hash_lock.
- Adding ci->m_lock protection to all helpers that read or modify
m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(),
ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()).
- Keeping the existing ci->m_lock protection in __ksmbd_inode_close(),
and moving the actual unlink/xattr removal outside the lock.
This unifies the locking around m_flags and removes the data race while
preserving the existing delete-on-close behaviour. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: initialize local pointers upon transfer of memory ownership
vidtv_channel_si_init() creates a temporary list (program, service, event)
and ownership of the memory itself is transferred to the PAT/SDT/EIT
tables through vidtv_psi_pat_program_assign(),
vidtv_psi_sdt_service_assign(), vidtv_psi_eit_event_assign().
The problem here is that the local pointer where the memory ownership
transfer was completed is not initialized to NULL. This causes the
vidtv_psi_pmt_create_sec_for_each_pat_entry() function to fail, and
in the flow that jumps to free_eit, the memory that was freed by
vidtv_psi_*_table_destroy() can be accessed again by
vidtv_psi_*_event_destroy() due to the uninitialized local pointer, so it
is freed once again.
Therefore, to prevent use-after-free and double-free vulnerability,
local pointers must be initialized to NULL when transferring memory
ownership. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix race between wbt_enable_default and IO submission
When wbt_enable_default() is moved out of queue freezing in elevator_change(),
it can cause the wbt inflight counter to become negative (-1), leading to hung
tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter
is in an inconsistent state.
The issue occurs because wbt_enable_default() could race with IO submission,
allowing the counter to be decremented before proper initialization. This manifests
as:
rq_wait[0]:
inflight: -1
has_waiters: True
rwb_enabled() checks the state, which can be updated exactly between wbt_wait()
(rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter
will become negative.
And results in hung task warnings like:
task:kworker/u24:39 state:D stack:0 pid:14767
Call Trace:
rq_qos_wait+0xb4/0x150
wbt_wait+0xa9/0x100
__rq_qos_throttle+0x24/0x40
blk_mq_submit_bio+0x672/0x7b0
...
Fix this by:
1. Splitting wbt_enable_default() into:
- __wbt_enable_default(): Returns true if wbt_init() should be called
- wbt_enable_default(): Wrapper for existing callers (no init)
- wbt_init_enable_default(): New function that checks and inits WBT
2. Using wbt_init_enable_default() in blk_register_queue() to ensure
proper initialization during queue registration
3. Move wbt_init() out of wbt_enable_default() which is only for enabling
disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the
original lock warning can be avoided.
4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling
code since it's no longer needed
This ensures WBT is properly initialized before any IO can be submitted,
preventing the counter from going negative. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix buffer validation by including null terminator size in EA length
The smb2_set_ea function, which handles Extended Attributes (EA),
was performing buffer validation checks that incorrectly omitted the size
of the null terminating character (+1 byte) for EA Name.
This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where
the null terminator is expected to be present in the buffer, ensuring
the validation accurately reflects the total required buffer size. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix io-uring list corruption for terminated non-committed requests
When a request is terminated before it has been committed, the request
is not removed from the queue's list. This leaves a dangling list entry
that leads to list corruption and use-after-free issues.
Remove the request from the queue's list for terminated non-committed
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: NFSv4 file creation neglects setting ACL
An NFSv4 client that sets an ACL with a named principal during file
creation retrieves the ACL afterwards, and finds that it is only a
default ACL (based on the mode bits) and not the ACL that was
requested during file creation. This violates RFC 8881 section
6.4.1.3: "the ACL attribute is set as given".
The issue occurs in nfsd_create_setattr(), which calls
nfsd_attrs_valid() to determine whether to call nfsd_setattr().
However, nfsd_attrs_valid() checks only for iattr changes and
security labels, but not POSIX ACLs. When only an ACL is present,
the function returns false, nfsd_setattr() is skipped, and the
POSIX ACL is never applied to the inode.
Subsequently, when the client retrieves the ACL, the server finds
no POSIX ACL on the inode and returns one generated from the file's
mode bits rather than returning the originally-specified ACL. |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_mr: Fix use-after-free when updating multicast route stats
Cited commit added a dedicated mutex (instead of RTNL) to protect the
multicast route list, so that it will not change while the driver
periodically traverses it in order to update the kernel about multicast
route stats that were queried from the device.
One instance of list entry deletion (during route replace) was missed
and it can result in a use-after-free [1].
Fix by acquiring the mutex before deleting the entry from the list and
releasing it afterwards.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_mr_stats_update+0x4a5/0x540 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:1006 [mlxsw_spectrum]
Read of size 8 at addr ffff8881523c2fa8 by task kworker/2:5/22043
CPU: 2 UID: 0 PID: 22043 Comm: kworker/2:5 Not tainted 6.18.0-rc1-custom-g1a3d6d7cd014 #1 PREEMPT(full)
Hardware name: Mellanox Technologies Ltd. MSN2010/SA002610, BIOS 5.6.5 08/24/2017
Workqueue: mlxsw_core mlxsw_sp_mr_stats_update [mlxsw_spectrum]
Call Trace:
<TASK>
dump_stack_lvl+0xba/0x110
print_report+0x174/0x4f5
kasan_report+0xdf/0x110
mlxsw_sp_mr_stats_update+0x4a5/0x540 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:1006 [mlxsw_spectrum]
process_one_work+0x9cc/0x18e0
worker_thread+0x5df/0xe40
kthread+0x3b8/0x730
ret_from_fork+0x3e9/0x560
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 29933:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
mlxsw_sp_mr_route_add+0xd8/0x4770 [mlxsw_spectrum]
mlxsw_sp_router_fibmr_event_work+0x371/0xad0 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:7965 [mlxsw_spectrum]
process_one_work+0x9cc/0x18e0
worker_thread+0x5df/0xe40
kthread+0x3b8/0x730
ret_from_fork+0x3e9/0x560
ret_from_fork_asm+0x1a/0x30
Freed by task 29933:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3b/0x70
__kasan_slab_free+0x43/0x70
kfree+0x14e/0x700
mlxsw_sp_mr_route_add+0x2dea/0x4770 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:444 [mlxsw_spectrum]
mlxsw_sp_router_fibmr_event_work+0x371/0xad0 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:7965 [mlxsw_spectrum]
process_one_work+0x9cc/0x18e0
worker_thread+0x5df/0xe40
kthread+0x3b8/0x730
ret_from_fork+0x3e9/0x560
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/amd: Check event before enable to avoid GPF
On AMD machines cpuc->events[idx] can become NULL in a subtle race
condition with NMI->throttle->x86_pmu_stop().
Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF.
This appears to be an AMD only issue.
Syzkaller reported a GPF in amd_pmu_enable_all.
INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143
msecs
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7]
CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk
RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195
arch/x86/events/core.c:1430)
RSP: 0018:ffff888118009d60 EFLAGS: 00010012
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601
FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0
Call Trace:
<IRQ>
amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2))
x86_pmu_enable (arch/x86/events/core.c:1360)
event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186
kernel/events/core.c:2346)
__perf_remove_from_context (kernel/events/core.c:2435)
event_function (kernel/events/core.c:259)
remote_function (kernel/events/core.c:92 (discriminator 1)
kernel/events/core.c:72 (discriminator 1))
__flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64
kernel/smp.c:135 kernel/smp.c:540)
__sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207
./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272)
sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47)
arch/x86/kernel/smp.c:266 (discriminator 47))
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid updating zero-sized extent in extent cache
As syzbot reported:
F2FS-fs (loop0): __update_extent_tree_range: extent len is zero, type: 0, extent [0, 0, 0], age [0, 0]
------------[ cut here ]------------
kernel BUG at fs/f2fs/extent_cache.c:678!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 5336 Comm: syz.0.0 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:__update_extent_tree_range+0x13bc/0x1500 fs/f2fs/extent_cache.c:678
Call Trace:
<TASK>
f2fs_update_read_extent_cache_range+0x192/0x3e0 fs/f2fs/extent_cache.c:1085
f2fs_do_zero_range fs/f2fs/file.c:1657 [inline]
f2fs_zero_range+0x10c1/0x1580 fs/f2fs/file.c:1737
f2fs_fallocate+0x583/0x990 fs/f2fs/file.c:2030
vfs_fallocate+0x669/0x7e0 fs/open.c:342
ioctl_preallocate fs/ioctl.c:289 [inline]
file_ioctl+0x611/0x780 fs/ioctl.c:-1
do_vfs_ioctl+0xb33/0x1430 fs/ioctl.c:576
__do_sys_ioctl fs/ioctl.c:595 [inline]
__se_sys_ioctl+0x82/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f07bc58eec9
In error path of f2fs_zero_range(), it may add a zero-sized extent
into extent cache, it should be avoided. |