| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: fix double-free in nr_route_frame()
In nr_route_frame(), old_skb is immediately freed without checking if
nr_neigh->ax25 pointer is NULL. Therefore, if nr_neigh->ax25 is NULL,
the caller function will free old_skb again, causing a double-free bug.
Therefore, to prevent this, we need to modify it to check whether
nr_neigh->ax25 is NULL before freeing old_skb. |
| In the Linux kernel, the following vulnerability has been resolved:
migrate: correct lock ordering for hugetlb file folios
Syzbot has found a deadlock (analyzed by Lance Yang):
1) Task (5749): Holds folio_lock, then tries to acquire i_mmap_rwsem(read lock).
2) Task (5754): Holds i_mmap_rwsem(write lock), then tries to acquire
folio_lock.
migrate_pages()
-> migrate_hugetlbs()
-> unmap_and_move_huge_page() <- Takes folio_lock!
-> remove_migration_ptes()
-> __rmap_walk_file()
-> i_mmap_lock_read() <- Waits for i_mmap_rwsem(read lock)!
hugetlbfs_fallocate()
-> hugetlbfs_punch_hole() <- Takes i_mmap_rwsem(write lock)!
-> hugetlbfs_zero_partial_page()
-> filemap_lock_hugetlb_folio()
-> filemap_lock_folio()
-> __filemap_get_folio <- Waits for folio_lock!
The migration path is the one taking locks in the wrong order according to
the documentation at the top of mm/rmap.c. So expand the scope of the
existing i_mmap_lock to cover the calls to remove_migration_ptes() too.
This is (mostly) how it used to be after commit c0d0381ade79. That was
removed by 336bf30eb765 for both file & anon hugetlb pages when it should
only have been removed for anon hugetlb pages. |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: fix cdev handling in the cleanup path
When cdev_device_add fails, it internally releases the cdev memory,
and if cdev_device_del is then executed, it will cause a hang error.
To fix it, we check the return value of cdev_device_add() and clear
uacce->cdev to avoid calling cdev_device_del in the uacce_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
gue: Fix skb memleak with inner IP protocol 0.
syzbot reported skb memleak below. [0]
The repro generated a GUE packet with its inner protocol 0.
gue_udp_recv() returns -guehdr->proto_ctype for "resubmit"
in ip_protocol_deliver_rcu(), but this only works with
non-zero protocol number.
Let's drop such packets.
Note that 0 is a valid number (IPv6 Hop-by-Hop Option).
I think it is not practical to encap HOPOPT in GUE, so once
someone starts to complain, we could pass down a resubmit
flag pointer to distinguish two zeros from the upper layer:
* no error
* resubmit HOPOPT
[0]
BUG: memory leak
unreferenced object 0xffff888109695a00 (size 240):
comm "syz.0.17", pid 6088, jiffies 4294943096
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 40 c2 10 81 88 ff ff 00 00 00 00 00 00 00 00 .@..............
backtrace (crc a84b336f):
kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline]
slab_post_alloc_hook mm/slub.c:4958 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_noprof+0x3b4/0x590 mm/slub.c:5270
__build_skb+0x23/0x60 net/core/skbuff.c:474
build_skb+0x20/0x190 net/core/skbuff.c:490
__tun_build_skb drivers/net/tun.c:1541 [inline]
tun_build_skb+0x4a1/0xa40 drivers/net/tun.c:1636
tun_get_user+0xc12/0x2030 drivers/net/tun.c:1770
tun_chr_write_iter+0x71/0x120 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x45d/0x710 fs/read_write.c:686
ksys_write+0xa7/0x170 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xa4/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: fix isolate sysfs check condition
uacce supports the device isolation feature. If the driver
implements the isolate_err_threshold_read and
isolate_err_threshold_write callback functions, uacce will create
sysfs files now. Users can read and configure the isolation policy
through sysfs. Currently, sysfs files are created as long as either
isolate_err_threshold_read or isolate_err_threshold_write callback
functions are present.
However, accessing a non-existent callback function may cause the
system to crash. Therefore, intercept the creation of sysfs if
neither read nor write exists; create sysfs if either is supported,
but intercept unsupported operations at the call site. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: smbd: fix dma_unmap_sg() nents
The dma_unmap_sg() functions should be called with the same nents as the
dma_map_sg(), not the value the map function returned. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: dac: ad3552r-hs: fix out-of-bound write in ad3552r_hs_write_data_source
When simple_write_to_buffer() succeeds, it returns the number of bytes
actually copied to the buffer. The code incorrectly uses 'count'
as the index for null termination instead of the actual bytes copied.
If count exceeds the buffer size, this leads to out-of-bounds write.
Add a check for the count and use the return value as the index.
The bug was validated using a demo module that mirrors the original
code and was tested under QEMU.
Pattern of the bug:
- A fixed 64-byte stack buffer is filled using count.
- If count > 64, the code still does buf[count] = '\0', causing an
- out-of-bounds write on the stack.
Steps for reproduce:
- Opens the device node.
- Writes 128 bytes of A to it.
- This overflows the 64-byte stack buffer and KASAN reports the OOB.
Found via static analysis. This is similar to the
commit da9374819eb3 ("iio: backend: fix out-of-bound write") |
| In the Linux kernel, the following vulnerability has been resolved:
intel_th: fix device leak on output open()
Make sure to drop the reference taken when looking up the th device
during output device open() on errors and on close().
Note that a recent commit fixed the leak in a couple of open() error
paths but not all of them, and the reference is still leaking on
successful open(). |
| In the Linux kernel, the following vulnerability has been resolved:
slimbus: core: fix device reference leak on report present
Slimbus devices can be allocated dynamically upon reception of
report-present messages.
Make sure to drop the reference taken when looking up already registered
devices.
Note that this requires taking an extra reference in case the device has
not yet been registered and has to be allocated. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix use-after-free in snd_usb_mixer_free()
When snd_usb_create_mixer() fails, snd_usb_mixer_free() frees
mixer->id_elems but the controls already added to the card still
reference the freed memory. Later when snd_card_register() runs,
the OSS mixer layer calls their callbacks and hits a use-after-free read.
Call trace:
get_ctl_value+0x63f/0x820 sound/usb/mixer.c:411
get_min_max_with_quirks.isra.0+0x240/0x1f40 sound/usb/mixer.c:1241
mixer_ctl_feature_info+0x26b/0x490 sound/usb/mixer.c:1381
snd_mixer_oss_build_test+0x174/0x3a0 sound/core/oss/mixer_oss.c:887
...
snd_card_register+0x4ed/0x6d0 sound/core/init.c:923
usb_audio_probe+0x5ef/0x2a90 sound/usb/card.c:1025
Fix by calling snd_ctl_remove() for all mixer controls before freeing
id_elems. We save the next pointer first because snd_ctl_remove()
frees the current element. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix crash on synthetic stacktrace field usage
When creating a synthetic event based on an existing synthetic event that
had a stacktrace field and the new synthetic event used that field a
kernel crash occurred:
~# cd /sys/kernel/tracing
~# echo 's:stack unsigned long stack[];' > dynamic_events
~# echo 'hist:keys=prev_pid:s0=common_stacktrace if prev_state & 3' >> events/sched/sched_switch/trigger
~# echo 'hist:keys=next_pid:s1=$s0:onmatch(sched.sched_switch).trace(stack,$s1)' >> events/sched/sched_switch/trigger
The above creates a synthetic event that takes a stacktrace when a task
schedules out in a non-running state and passes that stacktrace to the
sched_switch event when that task schedules back in. It triggers the
"stack" synthetic event that has a stacktrace as its field (called "stack").
~# echo 's:syscall_stack s64 id; unsigned long stack[];' >> dynamic_events
~# echo 'hist:keys=common_pid:s2=stack' >> events/synthetic/stack/trigger
~# echo 'hist:keys=common_pid:s3=$s2,i0=id:onmatch(synthetic.stack).trace(syscall_stack,$i0,$s3)' >> events/raw_syscalls/sys_exit/trigger
The above makes another synthetic event called "syscall_stack" that
attaches the first synthetic event (stack) to the sys_exit trace event and
records the stacktrace from the stack event with the id of the system call
that is exiting.
When enabling this event (or using it in a historgram):
~# echo 1 > events/synthetic/syscall_stack/enable
Produces a kernel crash!
BUG: unable to handle page fault for address: 0000000000400010
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 6 UID: 0 PID: 1257 Comm: bash Not tainted 6.16.3+deb14-amd64 #1 PREEMPT(lazy) Debian 6.16.3-1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:trace_event_raw_event_synth+0x90/0x380
Code: c5 00 00 00 00 85 d2 0f 84 e1 00 00 00 31 db eb 34 0f 1f 00 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 2e 0f 1f 84 00 00 00 00 00 <49> 8b 04 24 48 83 c3 01 8d 0c c5 08 00 00 00 01 cd 41 3b 5d 40 0f
RSP: 0018:ffffd2670388f958 EFLAGS: 00010202
RAX: ffff8ba1065cc100 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: fffff266ffda7b90 RDI: ffffd2670388f9b0
RBP: 0000000000000010 R08: ffff8ba104e76000 R09: ffffd2670388fa50
R10: ffff8ba102dd42e0 R11: ffffffff9a908970 R12: 0000000000400010
R13: ffff8ba10a246400 R14: ffff8ba10a710220 R15: fffff266ffda7b90
FS: 00007fa3bc63f740(0000) GS:ffff8ba2e0f48000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000400010 CR3: 0000000107f9e003 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __tracing_map_insert+0x208/0x3a0
action_trace+0x67/0x70
event_hist_trigger+0x633/0x6d0
event_triggers_call+0x82/0x130
trace_event_buffer_commit+0x19d/0x250
trace_event_raw_event_sys_exit+0x62/0xb0
syscall_exit_work+0x9d/0x140
do_syscall_64+0x20a/0x2f0
? trace_event_raw_event_sched_switch+0x12b/0x170
? save_fpregs_to_fpstate+0x3e/0x90
? _raw_spin_unlock+0xe/0x30
? finish_task_switch.isra.0+0x97/0x2c0
? __rseq_handle_notify_resume+0xad/0x4c0
? __schedule+0x4b8/0xd00
? restore_fpregs_from_fpstate+0x3c/0x90
? switch_fpu_return+0x5b/0xe0
? do_syscall_64+0x1ef/0x2f0
? do_fault+0x2e9/0x540
? __handle_mm_fault+0x7d1/0xf70
? count_memcg_events+0x167/0x1d0
? handle_mm_fault+0x1d7/0x2e0
? do_user_addr_fault+0x2c3/0x7f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The reason is that the stacktrace field is not labeled as such, and is
treated as a normal field and not as a dynamic event that it is.
In trace_event_raw_event_synth() the event is field is still treated as a
dynamic array, but the retrieval of the data is considered a normal field,
and the reference is just the meta data:
// Meta data is retrieved instead of a dynamic array
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: xen: scsiback: Fix potential memory leak in scsiback_remove()
Memory allocated for struct vscsiblk_info in scsiback_probe() is not
freed in scsiback_remove() leading to potential memory leaks on remove,
as well as in the scsiback_probe() error paths. Fix that by freeing it
in scsiback_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: cap TX credit to local buffer size
The virtio transports derives its TX credit directly from peer_buf_alloc,
which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value.
On the host side this means that the amount of data we are willing to
queue for a connection is scaled by a guest-chosen buffer size, rather
than the host's own vsock configuration. A malicious guest can advertise
a large buffer and read slowly, causing the host to allocate a
correspondingly large amount of sk_buff memory.
The same thing would happen in the guest with a malicious host, since
virtio transports share the same code base.
Introduce a small helper, virtio_transport_tx_buf_size(), that
returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume
peer_buf_alloc.
This ensures the effective TX window is bounded by both the peer's
advertised buffer and our own buf_alloc (already clamped to
buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer
cannot force the other to queue more data than allowed by its own
vsock settings.
On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with
32 guest vsock connections advertising 2 GiB each and reading slowly
drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only
recovered after killing the QEMU process. That said, if QEMU memory is
limited with cgroups, the maximum memory used will be limited.
With this patch applied:
Before:
MemFree: ~61.6 GiB
Slab: ~142 MiB
SUnreclaim: ~117 MiB
After 32 high-credit connections:
MemFree: ~61.5 GiB
Slab: ~178 MiB
SUnreclaim: ~152 MiB
Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest
remains responsive.
Compatibility with non-virtio transports:
- VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per
socket based on the local vsk->buffer_* values; the remote side
cannot enlarge those queues beyond what the local endpoint
configured.
- Hyper-V's vsock transport uses fixed-size VMBus ring buffers and
an MTU bound; there is no peer-controlled credit field comparable
to peer_buf_alloc, and the remote endpoint cannot drive in-flight
kernel memory above those ring sizes.
- The loopback path reuses virtio_transport_common.c, so it
naturally follows the same semantics as the virtio transport.
This change is limited to virtio_transport_common.c and thus affects
virtio-vsock, vhost-vsock, and loopback, bringing them in line with the
"remote window intersected with local policy" behaviour that VMCI and
Hyper-V already effectively have.
[Stefano: small adjustments after changing the previous patch]
[Stefano: tweak the commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Avoid truncating memory addresses
On 32-bit machines with CONFIG_ARM_LPAE, it is possible for lowmem
allocations to be backed by addresses physical memory above the 32-bit
address limit, as found while experimenting with larger VMSPLIT
configurations.
This caused the qemu virt model to crash in the GICv3 driver, which
allocates the 'itt' object using GFP_KERNEL. Since all memory below
the 4GB physical address limit is in ZONE_DMA in this configuration,
kmalloc() defaults to higher addresses for ZONE_NORMAL, and the
ITS driver stores the physical address in a 32-bit 'unsigned long'
variable.
Change the itt_addr variable to the correct phys_addr_t type instead,
along with all other variables in this driver that hold a physical
address.
The gicv5 driver correctly uses u64 variables, while all other irqchip
drivers don't call virt_to_phys or similar interfaces. It's expected that
other device drivers have similar issues, but fixing this one is
sufficient for booting a virtio based guest. |
| In the Linux kernel, the following vulnerability has been resolved:
be2net: Fix NULL pointer dereference in be_cmd_get_mac_from_list
When the parameter pmac_id_valid argument of be_cmd_get_mac_from_list() is
set to false, the driver may request the PMAC_ID from the firmware of the
network card, and this function will store that PMAC_ID at the provided
address pmac_id. This is the contract of this function.
However, there is a location within the driver where both
pmac_id_valid == false and pmac_id == NULL are being passed. This could
result in dereferencing a NULL pointer.
To resolve this issue, it is necessary to pass the address of a stub
variable to the function. |
| In the Linux kernel, the following vulnerability has been resolved:
fou: Don't allow 0 for FOU_ATTR_IPPROTO.
fou_udp_recv() has the same problem mentioned in the previous
patch.
If FOU_ATTR_IPPROTO is set to 0, skb is not freed by
fou_udp_recv() nor "resubmit"-ted in ip_protocol_deliver_rcu().
Let's forbid 0 for FOU_ATTR_IPPROTO. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): unanchor URL on usb_submit_urb() error
In commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix
URB memory leak"), the URB was re-anchored before usb_submit_urb() in
gs_usb_receive_bulk_callback() to prevent a leak of this URB during
cleanup.
However, this patch did not take into account that usb_submit_urb() could
fail. The URB remains anchored and
usb_kill_anchored_urbs(&parent->rx_submitted) in gs_can_close() loops
infinitely since the anchor list never becomes empty.
To fix the bug, unanchor the URB when an usb_submit_urb() error occurs,
also print an info message. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: intel-xway: fix OF node refcount leakage
Automated review spotted am OF node reference count leakage when
checking if the 'leds' child node exists.
Call of_put_node() to correctly maintain the refcount. |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcba_usb: mcba_usb_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In mcba_usb_probe() -> mcba_usb_start(), the URBs for USB-in transfers are
allocated, added to the priv->rx_submitted anchor and submitted. In the
complete callback mcba_usb_read_bulk_callback(), the URBs are processed and
resubmitted. In mcba_usb_close() -> mcba_urb_unlink() the URBs are freed by
calling usb_kill_anchored_urbs(&priv->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in usb_kill_anchored_urbs().
Fix the memory leak by anchoring the URB in the
mcba_usb_read_bulk_callback()to the priv->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: cdev: Fix resource leaks on errors in lineinfo_changed_notify()
On error handling paths, lineinfo_changed_notify() doesn't free the
allocated resources which results leaks. Fix it. |