Search

Search Results (327785 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71067 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs: set dummy blocksize to read boot_block when mounting When mounting, sb->s_blocksize is used to read the boot_block without being defined or validated. Set a dummy blocksize before attempting to read the boot_block. The issue can be triggered with the following syz reproducer: mkdirat(0xffffffffffffff9c, &(0x7f0000000080)='./file1\x00', 0x0) r4 = openat$nullb(0xffffffffffffff9c, &(0x7f0000000040), 0x121403, 0x0) ioctl$FS_IOC_SETFLAGS(r4, 0x40081271, &(0x7f0000000980)=0x4000) mount(&(0x7f0000000140)=@nullb, &(0x7f0000000040)='./cgroup\x00', &(0x7f0000000000)='ntfs3\x00', 0x2208004, 0x0) syz_clone(0x88200200, 0x0, 0x0, 0x0, 0x0, 0x0) Here, the ioctl sets the bdev block size to 16384. During mount, get_tree_bdev_flags() calls sb_set_blocksize(sb, block_size(bdev)), but since block_size(bdev) > PAGE_SIZE, sb_set_blocksize() leaves sb->s_blocksize at zero. Later, ntfs_init_from_boot() attempts to read the boot_block while sb->s_blocksize is still zero, which triggers the bug. [almaz.alexandrovich@paragon-software.com: changed comment style, added return value handling]
CVE-2025-71069 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: invalidate dentry cache on failed whiteout creation F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link. If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings. In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode. This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink(). Example sequence: 1. First rename (RENAME_WHITEOUT): file2 → file1 - f2fs updates file1 entry on disk (points to inode 8) - f2fs deletes file2 entry on disk - f2fs_add_link(whiteout) fails (corrupted directory) - Returns error to VFS - VFS does not call d_move() due to error - VFS cache still has: file1 → inode 7 (stale!) - inode 7 has i_nlink=0 (already decremented) 2. Second rename: file3 → file1 - VFS uses stale cache: file1 → inode 7 - Tries to drop_nlink on inode 7 (i_nlink already 0) - WARNING in drop_nlink() Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds. Reproducer: 1. Mount F2FS image with corrupted i_current_depth 2. renameat2(file2, file1, RENAME_WHITEOUT) 3. renameat2(file3, file1, 0) 4. System triggers WARNING in drop_nlink()
CVE-2025-71070 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ublk: clean up user copy references on ublk server exit If a ublk server process releases a ublk char device file, any requests dispatched to the ublk server but not yet completed will retain a ref value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify aborting ublk request"), __ublk_fail_req() would decrement the reference count before completing the failed request. However, that commit optimized __ublk_fail_req() to call __ublk_complete_rq() directly without decrementing the request reference count. The leaked reference count incorrectly allows user copy and zero copy operations on the completed ublk request. It also triggers the WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit() and ublk_deinit_queue(). Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk char dev is closed") already fixed the issue for ublk devices using UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference count leak also affects UBLK_F_USER_COPY, the other reference-counted data copy mode. Fix the condition in ublk_check_and_reset_active_ref() to include all reference-counted data copy modes. This ensures that any ublk requests still owned by the ublk server when it exits have their reference counts reset to 0.
CVE-2025-71072 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: shmem: fix recovery on rename failures maple_tree insertions can fail if we are seriously short on memory; simple_offset_rename() does not recover well if it runs into that. The same goes for simple_offset_rename_exchange(). Moreover, shmem_whiteout() expects that if it succeeds, the caller will progress to d_move(), i.e. that shmem_rename2() won't fail past the successful call of shmem_whiteout(). Not hard to fix, fortunately - mtree_store() can't fail if the index we are trying to store into is already present in the tree as a singleton. For simple_offset_rename_exchange() that's enough - we just need to be careful about the order of operations. For simple_offset_rename() solution is to preinsert the target into the tree for new_dir; the rest can be done without any potentially failing operations. That preinsertion has to be done in shmem_rename2() rather than in simple_offset_rename() itself - otherwise we'd need to deal with the possibility of failure after successful shmem_whiteout().
CVE-2025-71073 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: lkkbd - disable pending work before freeing device lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work handler lkkbd_reinit() dereferences the lkkbd structure and its serio/input_dev fields. lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd structure without preventing the reinit work from being queued again until serio_close() returns. This can allow the work handler to run after the structure has been freed, leading to a potential use-after-free. Use disable_work_sync() instead of cancel_work_sync() to ensure the reinit work cannot be re-queued, and call it both in lkkbd_disconnect() and in lkkbd_connect() error paths after serio_open().
CVE-2025-71074 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: functionfs: fix the open/removal races ffs_epfile_open() can race with removal, ending up with file->private_data pointing to freed object. There is a total count of opened files on functionfs (both ep0 and dynamic ones) and when it hits zero, dynamic files get removed. Unfortunately, that removal can happen while another thread is in ffs_epfile_open(), but has not incremented the count yet. In that case open will succeed, leaving us with UAF on any subsequent read() or write(). The root cause is that ffs->opened is misused; atomic_dec_and_test() vs. atomic_add_return() is not a good idea, when object remains visible all along. To untangle that * serialize openers on ffs->mutex (both for ep0 and for dynamic files) * have dynamic ones use atomic_inc_not_zero() and fail if we had zero ->opened; in that case the file we are opening is doomed. * have the inodes of dynamic files marked on removal (from the callback of simple_recursive_removal()) - clear ->i_private there. * have open of dynamic ones verify they hadn't been already removed, along with checking that state is FFS_ACTIVE.
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-71077 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: tpm: Cap the number of PCR banks tpm2_get_pcr_allocation() does not cap any upper limit for the number of banks. Cap the limit to eight banks so that out of bounds values coming from external I/O cause on only limited harm.
CVE-2025-71079 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: nfc: fix deadlock between nfc_unregister_device and rfkill_fop_write A deadlock can occur between nfc_unregister_device() and rfkill_fop_write() due to lock ordering inversion between device_lock and rfkill_global_mutex. The problematic lock order is: Thread A (rfkill_fop_write): rfkill_fop_write() mutex_lock(&rfkill_global_mutex) rfkill_set_block() nfc_rfkill_set_block() nfc_dev_down() device_lock(&dev->dev) <- waits for device_lock Thread B (nfc_unregister_device): nfc_unregister_device() device_lock(&dev->dev) rfkill_unregister() mutex_lock(&rfkill_global_mutex) <- waits for rfkill_global_mutex This creates a classic ABBA deadlock scenario. Fix this by moving rfkill_unregister() and rfkill_destroy() outside the device_lock critical section. Store the rfkill pointer in a local variable before releasing the lock, then call rfkill_unregister() after releasing device_lock. This change is safe because rfkill_fop_write() holds rfkill_global_mutex while calling the rfkill callbacks, and rfkill_unregister() also acquires rfkill_global_mutex before cleanup. Therefore, rfkill_unregister() will wait for any ongoing callback to complete before proceeding, and device_del() is only called after rfkill_unregister() returns, preventing any use-after-free. The similar lock ordering in nfc_register_device() (device_lock -> rfkill_global_mutex via rfkill_register) is safe because during registration the device is not yet in rfkill_list, so no concurrent rfkill operations can occur on this device.
CVE-2025-71080 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the current task can be preempted. Another task running on the same CPU may then execute rt6_make_pcpu_route() and successfully install a pcpu_rt entry. When the first task resumes execution, its cmpxchg() in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding mdelay() after rt6_get_pcpu_route(). Using preempt_disable/enable is not appropriate here because ip6_rt_pcpu_alloc() may sleep. Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT: free our allocation and return the existing pcpu_rt installed by another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT kernels where such races should not occur.
CVE-2025-71081 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ASoC: stm32: sai: fix OF node leak on probe The reference taken to the sync provider OF node when probing the platform device is currently only dropped if the set_sync() callback fails during DAI probe. Make sure to drop the reference on platform probe failures (e.g. probe deferral) and on driver unbind. This also avoids a potential use-after-free in case the DAI is ever reprobed without first rebinding the platform driver.
CVE-2025-71083 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/ttm: Avoid NULL pointer deref for evicted BOs It is possible for a BO to exist that is not currently associated with a resource, e.g. because it has been evicted. When devcoredump tries to read the contents of all BOs for dumping, we need to expect this as well -- in this case, ENODATA is recorded instead of the buffer contents.
CVE-2025-71084 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/cm: Fix leaking the multicast GID table reference If the CM ID is destroyed while the CM event for multicast creating is still queued the cancel_work_sync() will prevent the work from running which also prevents destroying the ah_attr. This leaks a refcount and triggers a WARN: GID entry ref leak for dev syz1 index 2 ref=573 WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 release_gid_table drivers/infiniband/core/cache.c:806 [inline] WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 gid_table_release_one+0x284/0x3cc drivers/infiniband/core/cache.c:886 Destroy the ah_attr after canceling the work, it is safe to call this twice.
CVE-2025-71085 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: BUG() in pskb_expand_head() as part of calipso_skbuff_setattr() There exists a kernel oops caused by a BUG_ON(nhead < 0) at net/core/skbuff.c:2232 in pskb_expand_head(). This bug is triggered as part of the calipso_skbuff_setattr() routine when skb_cow() is passed headroom > INT_MAX (i.e. (int)(skb_headroom(skb) + len_delta) < 0). The root cause of the bug is due to an implicit integer cast in __skb_cow(). The check (headroom > skb_headroom(skb)) is meant to ensure that delta = headroom - skb_headroom(skb) is never negative, otherwise we will trigger a BUG_ON in pskb_expand_head(). However, if headroom > INT_MAX and delta <= -NET_SKB_PAD, the check passes, delta becomes negative, and pskb_expand_head() is passed a negative value for nhead. Fix the trigger condition in calipso_skbuff_setattr(). Avoid passing "negative" headroom sizes to skb_cow() within calipso_skbuff_setattr() by only using skb_cow() to grow headroom. PoC: Using `netlabelctl` tool: netlabelctl map del default netlabelctl calipso add pass doi:7 netlabelctl map add default address:0::1/128 protocol:calipso,7 Then run the following PoC: int fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP); // setup msghdr int cmsg_size = 2; int cmsg_len = 0x60; struct msghdr msg; struct sockaddr_in6 dest_addr; struct cmsghdr * cmsg = (struct cmsghdr *) calloc(1, sizeof(struct cmsghdr) + cmsg_len); msg.msg_name = &dest_addr; msg.msg_namelen = sizeof(dest_addr); msg.msg_iov = NULL; msg.msg_iovlen = 0; msg.msg_control = cmsg; msg.msg_controllen = cmsg_len; msg.msg_flags = 0; // setup sockaddr dest_addr.sin6_family = AF_INET6; dest_addr.sin6_port = htons(31337); dest_addr.sin6_flowinfo = htonl(31337); dest_addr.sin6_addr = in6addr_loopback; dest_addr.sin6_scope_id = 31337; // setup cmsghdr cmsg->cmsg_len = cmsg_len; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_HOPOPTS; char * hop_hdr = (char *)cmsg + sizeof(struct cmsghdr); hop_hdr[1] = 0x9; //set hop size - (0x9 + 1) * 8 = 80 sendmsg(fd, &msg, 0);
CVE-2025-71086 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: rose: fix invalid array index in rose_kill_by_device() rose_kill_by_device() collects sockets into a local array[] and then iterates over them to disconnect sockets bound to a device being brought down. The loop mistakenly indexes array[cnt] instead of array[i]. For cnt < ARRAY_SIZE(array), this reads an uninitialized entry; for cnt == ARRAY_SIZE(array), it is an out-of-bounds read. Either case can lead to an invalid socket pointer dereference and also leaks references taken via sock_hold(). Fix the index to use i.
CVE-2025-71088 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fallback earlier on simult connection Syzkaller reports a simult-connect race leading to inconsistent fallback status: WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Modules linked in: CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6 RSP: 0018:ffffc900006cf338 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900 R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004 FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0 Call Trace: <TASK> tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197 tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922 tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672 tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918 ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500 dst_input include/net/dst.h:471 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979 __netif_receive_skb+0x1d/0x160 net/core/dev.c:6092 process_backlog+0x442/0x15e0 net/core/dev.c:6444 __napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494 napi_poll net/core/dev.c:7557 [inline] net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684 handle_softirqs+0x216/0x8e0 kernel/softirq.c:579 run_ksoftirqd kernel/softirq.c:968 [inline] run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960 smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160 kthread+0x3c2/0x780 kernel/kthread.c:463 ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The TCP subflow can process the simult-connect syn-ack packet after transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check, as the sk_state_change() callback is not invoked for * -> FIN_WAIT1 transitions. That will move the msk socket to an inconsistent status and the next incoming data will hit the reported splat. Close the race moving the simult-fallback check at the earliest possible stage - that is at syn-ack generation time. About the fixes tags: [2] was supposed to also fix this issue introduced by [3]. [1] is required as a dependence: it was not explicitly marked as a fix, but it is one and it has already been backported before [3]. In other words, this commit should be backported up to [3], including [2] and [1] if that's not already there.
CVE-2025-71089 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: iommu: disable SVA when CONFIG_X86 is set Patch series "Fix stale IOTLB entries for kernel address space", v7. This proposes a fix for a security vulnerability related to IOMMU Shared Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel page table entries. When a kernel page table page is freed and reallocated for another purpose, the IOMMU might still hold stale, incorrect entries. This can be exploited to cause a use-after-free or write-after-free condition, potentially leading to privilege escalation or data corruption. This solution introduces a deferred freeing mechanism for kernel page table pages, which provides a safe window to notify the IOMMU to invalidate its caches before the page is reused. This patch (of 8): In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware shares and walks the CPU's page tables. The x86 architecture maps the kernel's virtual address space into the upper portion of every process's page table. Consequently, in an SVA context, the IOMMU hardware can walk and cache kernel page table entries. The Linux kernel currently lacks a notification mechanism for kernel page table changes, specifically when page table pages are freed and reused. The IOMMU driver is only notified of changes to user virtual address mappings. This can cause the IOMMU's internal caches to retain stale entries for kernel VA. Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when kernel page table pages are freed and later reallocated. The IOMMU could misinterpret the new data as valid page table entries. The IOMMU might then walk into attacker-controlled memory, leading to arbitrary physical memory DMA access or privilege escalation. This is also a Write-After-Free issue, as the IOMMU will potentially continue to write Accessed and Dirty bits to the freed memory while attempting to walk the stale page tables. Currently, SVA contexts are unprivileged and cannot access kernel mappings. However, the IOMMU will still walk kernel-only page tables all the way down to the leaf entries, where it realizes the mapping is for the kernel and errors out. This means the IOMMU still caches these intermediate page table entries, making the described vulnerability a real concern. Disable SVA on x86 architecture until the IOMMU can receive notification to flush the paging cache before freeing the CPU kernel page table pages.
CVE-2025-71090 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg() nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if the client already has a SHARE_ACCESS_READ open from a previous OPEN operation, this action overwrites the existing pointer without releasing its reference, orphaning the previous reference. Additionally, the function originally stored the same nfsd_file pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with only a single reference. When put_deleg_file() runs, it clears fi_rdeleg_file and calls nfs4_file_put_access() to release the file. However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when the fi_access[O_RDONLY] counter drops to zero. If another READ open exists on the file, the counter remains elevated and the nfsd_file reference from the delegation is never released. This potentially causes open conflicts on that file. Then, on server shutdown, these leaks cause __nfsd_file_cache_purge() to encounter files with an elevated reference count that cannot be cleaned up, ultimately triggering a BUG() in kmem_cache_destroy() because there are still nfsd_file objects allocated in that cache.
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-71093 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: e1000: fix OOB in e1000_tbi_should_accept() In e1000_tbi_should_accept() we read the last byte of the frame via 'data[length - 1]' to evaluate the TBI workaround. If the descriptor- reported length is zero or larger than the actual RX buffer size, this read goes out of bounds and can hit unrelated slab objects. The issue is observed from the NAPI receive path (e1000_clean_rx_irq): ================================================================== BUG: KASAN: slab-out-of-bounds in e1000_tbi_should_accept+0x610/0x790 Read of size 1 at addr ffff888014114e54 by task sshd/363 CPU: 0 PID: 363 Comm: sshd Not tainted 5.18.0-rc1 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x5a/0x74 print_address_description+0x7b/0x440 print_report+0x101/0x200 kasan_report+0xc1/0xf0 e1000_tbi_should_accept+0x610/0x790 e1000_clean_rx_irq+0xa8c/0x1110 e1000_clean+0xde2/0x3c10 __napi_poll+0x98/0x380 net_rx_action+0x491/0xa20 __do_softirq+0x2c9/0x61d do_softirq+0xd1/0x120 </IRQ> <TASK> __local_bh_enable_ip+0xfe/0x130 ip_finish_output2+0x7d5/0xb00 __ip_queue_xmit+0xe24/0x1ab0 __tcp_transmit_skb+0x1bcb/0x3340 tcp_write_xmit+0x175d/0x6bd0 __tcp_push_pending_frames+0x7b/0x280 tcp_sendmsg_locked+0x2e4f/0x32d0 tcp_sendmsg+0x24/0x40 sock_write_iter+0x322/0x430 vfs_write+0x56c/0xa60 ksys_write+0xd1/0x190 do_syscall_64+0x43/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f511b476b10 Code: 73 01 c3 48 8b 0d 88 d3 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d f9 2b 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 31 c3 48 83 ec 08 e8 8e 9b 01 00 48 89 04 24 RSP: 002b:00007ffc9211d4e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000004024 RCX: 00007f511b476b10 RDX: 0000000000004024 RSI: 0000559a9385962c RDI: 0000000000000003 RBP: 0000559a9383a400 R08: fffffffffffffff0 R09: 0000000000004f00 R10: 0000000000000070 R11: 0000000000000246 R12: 0000000000000000 R13: 00007ffc9211d57f R14: 0000559a9347bde7 R15: 0000000000000003 </TASK> Allocated by task 1: __kasan_krealloc+0x131/0x1c0 krealloc+0x90/0xc0 add_sysfs_param+0xcb/0x8a0 kernel_add_sysfs_param+0x81/0xd4 param_sysfs_builtin+0x138/0x1a6 param_sysfs_init+0x57/0x5b do_one_initcall+0x104/0x250 do_initcall_level+0x102/0x132 do_initcalls+0x46/0x74 kernel_init_freeable+0x28f/0x393 kernel_init+0x14/0x1a0 ret_from_fork+0x22/0x30 The buggy address belongs to the object at ffff888014114000 which belongs to the cache kmalloc-2k of size 2048 The buggy address is located 1620 bytes to the right of 2048-byte region [ffff888014114000, ffff888014114800] The buggy address belongs to the physical page: page:ffffea0000504400 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14110 head:ffffea0000504400 order:3 compound_mapcount:0 compound_pincount:0 flags: 0x100000000010200(slab|head|node=0|zone=1) raw: 0100000000010200 0000000000000000 dead000000000001 ffff888013442000 raw: 0000000000000000 0000000000080008 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected ================================================================== This happens because the TBI check unconditionally dereferences the last byte without validating the reported length first: u8 last_byte = *(data + length - 1); Fix by rejecting the frame early if the length is zero, or if it exceeds adapter->rx_buffer_len. This preserves the TBI workaround semantics for valid frames and prevents touching memory beyond the RX buffer.