CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get()
nft_unregister_flowtable_type() within nf_flow_inet_module_exit() can
concurrent with __nft_flowtable_type_get() within nf_tables_newflowtable().
And thhere is not any protection when iterate over nf_tables_flowtables
list in __nft_flowtable_type_get(). Therefore, there is pertential
data-race of nf_tables_flowtables list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_flowtables list
in __nft_flowtable_type_get(), and use rcu_read_lock() in the caller
nft_flowtable_type_get() to protect the entire type query process. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: validate user input for expected length
I got multiple syzbot reports showing old bugs exposed
by BPF after commit 20f2505fb436 ("bpf: Try to avoid kzalloc
in cgroup/{s,g}etsockopt")
setsockopt() @optlen argument should be taken into account
before copying data.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238
CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
RIP: 0033:0x7fd22067dde9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9
RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000
R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8
</TASK>
Allocated by task 7238:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:4069 [inline]
__kmalloc_noprof+0x200/0x410 mm/slub.c:4082
kmalloc_noprof include/linux/slab.h:664 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
The buggy address belongs to the object at ffff88802cd73da0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 0 bytes inside of
allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73
flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff)
page_type: 0xffffefff(slab)
raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122
raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Prevent lock inversion deadlock in map delete elem
syzkaller started using corpuses where a BPF tracing program deletes
elements from a sockmap/sockhash map. Because BPF tracing programs can be
invoked from any interrupt context, locks taken during a map_delete_elem
operation must be hardirq-safe. Otherwise a deadlock due to lock inversion
is possible, as reported by lockdep:
CPU0 CPU1
---- ----
lock(&htab->buckets[i].lock);
local_irq_disable();
lock(&host->lock);
lock(&htab->buckets[i].lock);
<Interrupt>
lock(&host->lock);
Locks in sockmap are hardirq-unsafe by design. We expects elements to be
deleted from sockmap/sockhash only in task (normal) context with interrupts
enabled, or in softirq context.
Detect when map_delete_elem operation is invoked from a context which is
_not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an
error.
Note that map updates are not affected by this issue. BPF verifier does not
allow updating sockmap/sockhash from a BPF tracing program today. |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash
The rehash delayed work migrates filters from one region to another
according to the number of available credits.
The migrated from region is destroyed at the end of the work if the
number of credits is non-negative as the assumption is that this is
indicative of migration being complete. This assumption is incorrect as
a non-negative number of credits can also be the result of a failed
migration.
The destruction of a region that still has filters referencing it can
result in a use-after-free [1].
Fix by not destroying the region if migration failed.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858
CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
Call Trace:
<TASK>
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70
mlxsw_sp_acl_atcam_entry_del+0x81/0x210
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 174:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 7:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_region_destroy+0x272/0x310
mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
Syzbot reported the following information leak for in
btrfs_ioctl_logical_to_ino():
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
_copy_to_user+0xbc/0x110 lib/usercopy.c:40
copy_to_user include/linux/uaccess.h:191 [inline]
btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
__kmalloc_large_node+0x231/0x370 mm/slub.c:3921
__do_kmalloc_node mm/slub.c:3954 [inline]
__kmalloc_node+0xb07/0x1060 mm/slub.c:3973
kmalloc_node include/linux/slab.h:648 [inline]
kvmalloc_node+0xc0/0x2d0 mm/util.c:634
kvmalloc include/linux/slab.h:766 [inline]
init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779
btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 40-65535 of 65536 are uninitialized
Memory access of size 65536 starts at ffff888045a40000
This happens, because we're copying a 'struct btrfs_data_container' back
to user-space. This btrfs_data_container is allocated in
'init_data_container()' via kvmalloc(), which does not zero-fill the
memory.
Fix this by using kvzalloc() which zeroes out the memory on allocation. |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Prevent double free on error
The error handling path in its_vpe_irq_domain_alloc() causes a double free
when its_vpe_init() fails after successfully allocating at least one
interrupt. This happens because its_vpe_irq_domain_free() frees the
interrupts along with the area bitmap and the vprop_page and
its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the
vprop_page again.
Fix this by unconditionally invoking its_vpe_irq_domain_free() which
handles all cases correctly and by removing the bitmap/vprop_page freeing
from its_vpe_irq_domain_alloc().
[ tglx: Massaged change log ] |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: dbg-tlv: ensure NUL termination
The iwl_fw_ini_debug_info_tlv is used as a string, so we must
ensure the string is terminated correctly before using it. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft->g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft->g will be freed again. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA
This dma_alloc_coherent() is undone neither in the remove function, nor in
the error handling path of fsl_qdma_probe().
Switch to the managed version to fix both issues. |
In the Linux kernel, the following vulnerability has been resolved:
drm/lima: fix a memleak in lima_heap_alloc
When lima_vm_map_bo fails, the resources need to be deallocated, or
there will be memleaks. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer()
In the for statement of lbs_allocate_cmd_buffer(), if the allocation of
cmdarray[i].cmdbuf fails, both cmdarray and cmdarray[i].cmdbuf needs to
be freed. Otherwise, there will be memleaks in lbs_allocate_cmd_buffer(). |
In the Linux kernel, the following vulnerability has been resolved:
vt: fix unicode buffer corruption when deleting characters
This is the same issue that was fixed for the VGA text buffer in commit
39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the
buffer"). The cure is also the same i.e. replace memcpy() with memmove()
due to the overlaping buffers. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach
This is the candidate patch of CVE-2023-47233 :
https://nvd.nist.gov/vuln/detail/CVE-2023-47233
In brcm80211 driver,it starts with the following invoking chain
to start init a timeout worker:
->brcmf_usb_probe
->brcmf_usb_probe_cb
->brcmf_attach
->brcmf_bus_started
->brcmf_cfg80211_attach
->wl_init_priv
->brcmf_init_escan
->INIT_WORK(&cfg->escan_timeout_work,
brcmf_cfg80211_escan_timeout_worker);
If we disconnect the USB by hotplug, it will call
brcmf_usb_disconnect to make cleanup. The invoking chain is :
brcmf_usb_disconnect
->brcmf_usb_disconnect_cb
->brcmf_detach
->brcmf_cfg80211_detach
->kfree(cfg);
While the timeout woker may still be running. This will cause
a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker.
Fix it by deleting the timer and canceling the worker in
brcmf_cfg80211_detach.
[arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free] |
In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Disable auto-enable of exclusive INTx IRQ
Currently for devices requiring masking at the irqchip for INTx, ie.
devices without DisINTx support, the IRQ is enabled in request_irq()
and subsequently disabled as necessary to align with the masked status
flag. This presents a window where the interrupt could fire between
these events, resulting in the IRQ incrementing the disable depth twice.
This would be unrecoverable for a user since the masked flag prevents
nested enables through vfio.
Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx
is never auto-enabled, then unmask as required. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: ncm: Avoid dropping datagrams of properly parsed NTBs
It is observed sometimes when tethering is used over NCM with Windows 11
as host, at some instances, the gadget_giveback has one byte appended at
the end of a proper NTB. When the NTB is parsed, unwrap call looks for
any leftover bytes in SKB provided by u_ether and if there are any pending
bytes, it treats them as a separate NTB and parses it. But in case the
second NTB (as per unwrap call) is faulty/corrupt, all the datagrams that
were parsed properly in the first NTB and saved in rx_list are dropped.
Adding a few custom traces showed the following:
[002] d..1 7828.532866: dwc3_gadget_giveback: ep1out:
req 000000003868811a length 1025/16384 zsI ==> 0
[002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb toprocess: 1025
[002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb seq: 0xce67
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x400
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb ndp_len: 0x10
[002] d..1 7828.532869: ncm_unwrap_ntb: K: Parsed NTB with 1 frames
In this case, the giveback is of 1025 bytes and block length is 1024.
The rest 1 byte (which is 0x00) won't be parsed resulting in drop of
all datagrams in rx_list.
Same is case with packets of size 2048:
[002] d..1 7828.557948: dwc3_gadget_giveback: ep1out:
req 0000000011dfd96e length 2049/16384 zsI ==> 0
[002] d..1 7828.557949: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342
[002] d..1 7828.557950: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x800
Lecroy shows one byte coming in extra confirming that the byte is coming
in from PC:
Transfer 2959 - Bytes Transferred(1025) Timestamp((18.524 843 590)
- Transaction 8391 - Data(1025 bytes) Timestamp(18.524 843 590)
--- Packet 4063861
Data(1024 bytes)
Duration(2.117us) Idle(14.700ns) Timestamp(18.524 843 590)
--- Packet 4063863
Data(1 byte)
Duration(66.160ns) Time(282.000ns) Timestamp(18.524 845 722)
According to Windows driver, no ZLP is needed if wBlockLength is non-zero,
because the non-zero wBlockLength has already told the function side the
size of transfer to be expected. However, there are in-market NCM devices
that rely on ZLP as long as the wBlockLength is multiple of wMaxPacketSize.
To deal with such devices, it pads an extra 0 at end so the transfer is no
longer multiple of wMaxPacketSize. |
In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: Fix Use-After-Free in ovs_ct_exit
Since kfree_rcu, which is called in the hlist_for_each_entry_rcu traversal
of ovs_ct_limit_exit, is not part of the RCU read critical section, it
is possible that the RCU grace period will pass during the traversal and
the key will be free.
To prevent this, it should be changed to hlist_for_each_entry_safe. |
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix some memleaks in gssx_dec_option_array
The creds and oa->data need to be freed in the error-handling paths after
their allocation. So this patch add these deallocations in the
corresponding paths. |
In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-mem2mem: fix a memleak in v4l2_m2m_register_entity
The entity->name (i.e. name) is allocated in v4l2_m2m_register_entity
but isn't freed in its following error-handling paths. This patch
adds such deallocation to prevent memleak of entity->name. |
In the Linux kernel, the following vulnerability has been resolved:
media: imx: csc/scaler: fix v4l2_ctrl_handler memory leak
Free the memory allocated in v4l2_ctrl_handler_init on release. |