| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Missing Release of Memory after Effective Lifetime vulnerability in Is-Daouda is-Engine.This issue affects is-Engine: before 3.3.4. |
| Out-of-bounds Write, Heap-based Buffer Overflow vulnerability in Is-Daouda is-Engine.This issue affects is-Engine: before 3.3.4. |
| A flaw was found in libsoup, an HTTP client library. This vulnerability, known as CRLF (Carriage Return Line Feed) Injection, occurs when an HTTP proxy is configured and the library improperly handles URL-decoded input used to create the Host header. A remote attacker can exploit this by providing a specially crafted URL containing CRLF sequences, allowing them to inject additional HTTP headers or complete HTTP request bodies. This can lead to unintended or unauthorized HTTP requests being forwarded by the proxy, potentially impacting downstream services. |
| In the Linux kernel, the following vulnerability has been resolved:
qed: Don't collect too many protection override GRC elements
In the protection override dump path, the firmware can return far too
many GRC elements, resulting in attempting to write past the end of the
previously-kmalloc'ed dump buffer.
This will result in a kernel panic with reason:
BUG: unable to handle kernel paging request at ADDRESS
where "ADDRESS" is just past the end of the protection override dump
buffer. The start address of the buffer is:
p_hwfn->cdev->dbg_features[DBG_FEATURE_PROTECTION_OVERRIDE].dump_buf
and the size of the buffer is buf_size in the same data structure.
The panic can be arrived at from either the qede Ethernet driver path:
[exception RIP: qed_grc_dump_addr_range+0x108]
qed_protection_override_dump at ffffffffc02662ed [qed]
qed_dbg_protection_override_dump at ffffffffc0267792 [qed]
qed_dbg_feature at ffffffffc026aa8f [qed]
qed_dbg_all_data at ffffffffc026b211 [qed]
qed_fw_fatal_reporter_dump at ffffffffc027298a [qed]
devlink_health_do_dump at ffffffff82497f61
devlink_health_report at ffffffff8249cf29
qed_report_fatal_error at ffffffffc0272baf [qed]
qede_sp_task at ffffffffc045ed32 [qede]
process_one_work at ffffffff81d19783
or the qedf storage driver path:
[exception RIP: qed_grc_dump_addr_range+0x108]
qed_protection_override_dump at ffffffffc068b2ed [qed]
qed_dbg_protection_override_dump at ffffffffc068c792 [qed]
qed_dbg_feature at ffffffffc068fa8f [qed]
qed_dbg_all_data at ffffffffc0690211 [qed]
qed_fw_fatal_reporter_dump at ffffffffc069798a [qed]
devlink_health_do_dump at ffffffff8aa95e51
devlink_health_report at ffffffff8aa9ae19
qed_report_fatal_error at ffffffffc0697baf [qed]
qed_hw_err_notify at ffffffffc06d32d7 [qed]
qed_spq_post at ffffffffc06b1011 [qed]
qed_fcoe_destroy_conn at ffffffffc06b2e91 [qed]
qedf_cleanup_fcport at ffffffffc05e7597 [qedf]
qedf_rport_event_handler at ffffffffc05e7bf7 [qedf]
fc_rport_work at ffffffffc02da715 [libfc]
process_one_work at ffffffff8a319663
Resolve this by clamping the firmware's return value to the maximum
number of legal elements the firmware should return. |
| Access of Resource Using Incompatible Type ('Type Confusion') vulnerability in themrdemonized xray-monolith.This issue affects xray-monolith: before 2025.12.30. |
| IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via an exposed HTTP channel using VLC network. |
| IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via unauthenticated port access. |
| When an error occurs in the application a full stacktrace is provided to the user. The stacktrace lists class and method names as well as other internal information. An attacker can thus obtain information about the technology used and the structure of the application. |
| If a user tries to login but the provided credentials are incorrect a log is created. The data for this POST requests is not validated and it’s possible to send giant payloads which are then logged. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: as73211: Ensure buffer holes are zeroed
Given that the buffer is copied to a kfifo that ultimately user space
can read, ensure we zero it. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix handling of zero-length records on the rx_list
Each recvmsg() call must process either
- only contiguous DATA records (any number of them)
- one non-DATA record
If the next record has different type than what has already been
processed we break out of the main processing loop. If the record
has already been decrypted (which may be the case for TLS 1.3 where
we don't know type until decryption) we queue the pending record
to the rx_list. Next recvmsg() will pick it up from there.
Queuing the skb to rx_list after zero-copy decrypt is not possible,
since in that case we decrypted directly to the user space buffer,
and we don't have an skb to queue (darg.skb points to the ciphertext
skb for access to metadata like length).
Only data records are allowed zero-copy, and we break the processing
loop after each non-data record. So we should never zero-copy and
then find out that the record type has changed. The corner case
we missed is when the initial record comes from rx_list, and it's
zero length. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix slab-out-of-bounds in hfs_bnode_read()
This patch introduces is_bnode_offset_valid() method that checks
the requested offset value. Also, it introduces
check_and_correct_requested_length() method that checks and
correct the requested length (if it is necessary). These methods
are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(),
hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent
the access out of allocated memory and triggering the crash. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
The hfsplus_readdir() method is capable to crash by calling
hfsplus_uni2asc():
[ 667.121659][ T9805] ==================================================================
[ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10
[ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805
[ 667.124578][ T9805]
[ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full)
[ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 667.124890][ T9805] Call Trace:
[ 667.124893][ T9805] <TASK>
[ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0
[ 667.124911][ T9805] print_report+0xd0/0x660
[ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610
[ 667.124928][ T9805] ? __phys_addr+0xe8/0x180
[ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124942][ T9805] kasan_report+0xc6/0x100
[ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10
[ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360
[ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0
[ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10
[ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0
[ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0
[ 667.125022][ T9805] ? lock_acquire+0x30/0x80
[ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0
[ 667.125044][ T9805] ? putname+0x154/0x1a0
[ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10
[ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0
[ 667.125069][ T9805] iterate_dir+0x296/0xb20
[ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10
[ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200
[ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10
[ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0
[ 667.125143][ T9805] do_syscall_64+0xc9/0x480
[ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9
[ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48
[ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9
[ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9
[ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004
[ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110
[ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260
[ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 667.125207][ T9805] </TASK>
[ 667.125210][ T9805]
[ 667.145632][ T9805] Allocated by task 9805:
[ 667.145991][ T9805] kasan_save_stack+0x20/0x40
[ 667.146352][ T9805] kasan_save_track+0x14/0x30
[ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0
[ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550
[ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0
[ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0
[ 667.148174][ T9805] iterate_dir+0x296/0xb20
[ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.148937][ T9805] do_syscall_64+0xc9/0x480
[ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.149809][ T9805]
[ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000
[ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048
[ 667.151282][ T9805] The buggy address is located 0 bytes to the right of
[ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c)
[ 667.1
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: don't use BUG_ON() in hfsplus_create_attributes_file()
When the volume header contains erroneous values that do not reflect
the actual state of the filesystem, hfsplus_fill_super() assumes that
the attributes file is not yet created, which later results in hitting
BUG_ON() when hfsplus_create_attributes_file() is called. Replace this
BUG_ON() with -EIO error with a message to suggest running fsck tool. |
| In the Linux kernel, the following vulnerability has been resolved:
drbd: add missing kref_get in handle_write_conflicts
With `two-primaries` enabled, DRBD tries to detect "concurrent" writes
and handle write conflicts, so that even if you write to the same sector
simultaneously on both nodes, they end up with the identical data once
the writes are completed.
In handling "superseeded" writes, we forgot a kref_get,
resulting in a premature drbd_destroy_device and use after free,
and further to kernel crashes with symptoms.
Relevance: No one should use DRBD as a random data generator, and apparently
all users of "two-primaries" handle concurrent writes correctly on layer up.
That is cluster file systems use some distributed lock manager,
and live migration in virtualization environments stops writes on one node
before starting writes on the other node.
Which means that other than for "test cases",
this code path is never taken in real life.
FYI, in DRBD 9, things are handled differently nowadays. We still detect
"write conflicts", but no longer try to be smart about them.
We decided to disconnect hard instead: upper layers must not submit concurrent
writes. If they do, that's their fault. |
| Reliance on untrusted inputs in a security decision in Microsoft Office allows an unauthorized attacker to bypass a security feature locally. |
| telnetd in GNU Inetutils through 2.7 allows remote authentication bypass via a "-f root" value for the USER environment variable. |
| SmarterTools SmarterMail versions prior to build 9511 contain an authentication bypass vulnerability in the password reset API. The force-reset-password endpoint permits anonymous requests and fails to verify the existing password or a reset token when resetting system administrator accounts. An unauthenticated attacker can supply a target administrator username and a new password to reset the account, resulting in full administrative compromise of the SmarterMail instance. NOTE:Â SmarterMail system administrator privileges grant the ability to execute operating system commands via built-in management functionality, effectively providing administrative (SYSTEM or root) access on the underlying host. |
| Integer Overflow or Wraparound vulnerability in yoyofr modizer.This issue affects modizer: before 4.1.1. |