Search Results (67335 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50430 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mmc: vub300: fix warning - do not call blocking ops when !TASK_RUNNING vub300_enable_sdio_irq() works with mutex and need TASK_RUNNING here. Ensure that we mark current as TASK_RUNNING for sleepable context. [ 77.554641] do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff92a72c1d>] sdio_irq_thread+0x17d/0x5b0 [ 77.554652] WARNING: CPU: 2 PID: 1983 at kernel/sched/core.c:9813 __might_sleep+0x116/0x160 [ 77.554905] CPU: 2 PID: 1983 Comm: ksdioirqd/mmc1 Tainted: G OE 6.1.0-rc5 #1 [ 77.554910] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, BIOS BECFL357.86A.0081.2020.0504.1834 05/04/2020 [ 77.554912] RIP: 0010:__might_sleep+0x116/0x160 [ 77.554920] RSP: 0018:ffff888107b7fdb8 EFLAGS: 00010282 [ 77.554923] RAX: 0000000000000000 RBX: ffff888118c1b740 RCX: 0000000000000000 [ 77.554926] RDX: 0000000000000001 RSI: 0000000000000004 RDI: ffffed1020f6ffa9 [ 77.554928] RBP: ffff888107b7fde0 R08: 0000000000000001 R09: ffffed1043ea60ba [ 77.554930] R10: ffff88821f5305cb R11: ffffed1043ea60b9 R12: ffffffff93aa3a60 [ 77.554932] R13: 000000000000011b R14: 7fffffffffffffff R15: ffffffffc0558660 [ 77.554934] FS: 0000000000000000(0000) GS:ffff88821f500000(0000) knlGS:0000000000000000 [ 77.554937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 77.554939] CR2: 00007f8a44010d68 CR3: 000000024421a003 CR4: 00000000003706e0 [ 77.554942] Call Trace: [ 77.554944] <TASK> [ 77.554952] mutex_lock+0x78/0xf0 [ 77.554973] vub300_enable_sdio_irq+0x103/0x3c0 [vub300] [ 77.554981] sdio_irq_thread+0x25c/0x5b0 [ 77.555006] kthread+0x2b8/0x370 [ 77.555017] ret_from_fork+0x1f/0x30 [ 77.555023] </TASK> [ 77.555025] ---[ end trace 0000000000000000 ]---
CVE-2023-53491 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: start_kernel: Add __no_stack_protector function attribute Back during the discussion of commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try") we discussed the need for a function attribute to control the omission of stack protectors on a per-function basis; at the time Clang had support for no_stack_protector but GCC did not. This was fixed in gcc-11. Now that the function attribute is available, let's start using it. Callers of boot_init_stack_canary need to use this function attribute unless they're compiled with -fno-stack-protector, otherwise the canary stored in the stack slot of the caller will differ upon the call to boot_init_stack_canary. This will lead to a call to __stack_chk_fail() then panic.
CVE-2025-39899 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/userfaultfd: fix kmap_local LIFO ordering for CONFIG_HIGHPTE With CONFIG_HIGHPTE on 32-bit ARM, move_pages_pte() maps PTE pages using kmap_local_page(), which requires unmapping in Last-In-First-Out order. The current code maps dst_pte first, then src_pte, but unmaps them in the same order (dst_pte, src_pte), violating the LIFO requirement. This causes the warning in kunmap_local_indexed(): WARNING: CPU: 0 PID: 604 at mm/highmem.c:622 kunmap_local_indexed+0x178/0x17c addr \!= __fix_to_virt(FIX_KMAP_BEGIN + idx) Fix this by reversing the unmap order to respect LIFO ordering. This issue follows the same pattern as similar fixes: - commit eca6828403b8 ("crypto: skcipher - fix mismatch between mapping and unmapping order") - commit 8cf57c6df818 ("nilfs2: eliminate staggered calls to kunmap in nilfs_rename") Both of which addressed the same fundamental requirement that kmap_local operations must follow LIFO ordering.
CVE-2025-59537 1 Argoproj 1 Argo-cd 2025-10-02 7.5 High
Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Versions 1.2.0 through 1.8.7, 2.0.0-rc1 through 2.14.19, 3.0.0-rc1 through 3.2.0-rc1, 3.1.7 and 3.0.18 are vulnerable to malicious API requests which can crash the API server and cause denial of service to legitimate clients. With the default configuration, no webhook.gogs.secret set, Argo CD’s /api/webhook endpoint will crash the entire argocd-server process when it receives a Gogs push event whose JSON field commits[].repo is not set or is null. This issue is fixed in versions 2.14.20, 3.2.0-rc2, 3.1.8 and 3.0.19.
CVE-2025-54811 1 Openplcproject 2 Openplc V3, Openplc V3 Firmware 2025-10-02 7.1 High
OpenPLC_V3 has a vulnerability in the enipThread function that occurs due to the lack of a return value. This leads to a crash when the server loop ends and execution hits an illegal ud2 instruction. This issue can be triggered remotely without authentication by starting the same server multiple times or if the server exits unexpectedly. The vulnerability allows an attacker to cause a Denial of Service (DoS) against the PLC runtime, stopping any PC started remotely without authentication. This results in the PLC process crashing and halting all automation or control logic managed by OpenPLC.
CVE-2023-53513 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nbd: fix incomplete validation of ioctl arg We tested and found an alarm caused by nbd_ioctl arg without verification. The UBSAN warning calltrace like below: UBSAN: Undefined behaviour in fs/buffer.c:1709:35 signed integer overflow: -9223372036854775808 - 1 cannot be represented in type 'long long int' CPU: 3 PID: 2523 Comm: syz-executor.0 Not tainted 4.19.90 #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x3f0 arch/arm64/kernel/time.c:78 show_stack+0x28/0x38 arch/arm64/kernel/traps.c:158 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x170/0x1dc lib/dump_stack.c:118 ubsan_epilogue+0x18/0xb4 lib/ubsan.c:161 handle_overflow+0x188/0x1dc lib/ubsan.c:192 __ubsan_handle_sub_overflow+0x34/0x44 lib/ubsan.c:206 __block_write_full_page+0x94c/0xa20 fs/buffer.c:1709 block_write_full_page+0x1f0/0x280 fs/buffer.c:2934 blkdev_writepage+0x34/0x40 fs/block_dev.c:607 __writepage+0x68/0xe8 mm/page-writeback.c:2305 write_cache_pages+0x44c/0xc70 mm/page-writeback.c:2240 generic_writepages+0xdc/0x148 mm/page-writeback.c:2329 blkdev_writepages+0x2c/0x38 fs/block_dev.c:2114 do_writepages+0xd4/0x250 mm/page-writeback.c:2344 The reason for triggering this warning is __block_write_full_page() -> i_size_read(inode) - 1 overflow. inode->i_size is assigned in __nbd_ioctl() -> nbd_set_size() -> bytesize. We think it is necessary to limit the size of arg to prevent errors. Moreover, __nbd_ioctl() -> nbd_add_socket(), arg will be cast to int. Assuming the value of arg is 0x80000000000000001) (on a 64-bit machine), it will become 1 after the coercion, which will return unexpected results. Fix it by adding checks to prevent passing in too large numbers.
CVE-2023-53503 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: allow ext4_get_group_info() to fail Previously, ext4_get_group_info() would treat an invalid group number as BUG(), since in theory it should never happen. However, if a malicious attaker (or fuzzer) modifies the superblock via the block device while it is the file system is mounted, it is possible for s_first_data_block to get set to a very large number. In that case, when calculating the block group of some block number (such as the starting block of a preallocation region), could result in an underflow and very large block group number. Then the BUG_ON check in ext4_get_group_info() would fire, resutling in a denial of service attack that can be triggered by root or someone with write access to the block device. For a quality of implementation perspective, it's best that even if the system administrator does something that they shouldn't, that it will not trigger a BUG. So instead of BUG'ing, ext4_get_group_info() will call ext4_error and return NULL. We also add fallback code in all of the callers of ext4_get_group_info() that it might NULL. Also, since ext4_get_group_info() was already borderline to be an inline function, un-inline it. The results in a next reduction of the compiled text size of ext4 by roughly 2k.
CVE-2025-59538 1 Argoproj 1 Argo-cd 2025-10-02 7.5 High
Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. For versions 2.9.0-rc1 through 2.14.19, 3.0.0-rc1 through 3.2.0-rc1, 3.1.6 and 3.0.17, when the webhook.azuredevops.username and webhook.azuredevops.password are not set in the default configuration, the /api/webhook endpoint crashes the entire argocd-server process when it receives an Azure DevOps Push event whose JSON array resource.refUpdates is empty. The slice index [0] is accessed without a length check, causing an index-out-of-range panic. A single unauthenticated HTTP POST is enough to kill the process. This issue is resolved in versions 2.14.20, 3.2.0-rc2, 3.1.8 and 3.0.19.
CVE-2025-59531 1 Argoproj 1 Argo-cd 2025-10-02 7.5 High
Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Versions 1.2.0 through 1.8.7, 2.0.0-rc1 through 2.14.19, 3.0.0-rc1 through 3.2.0-rc1, 3.1.7 and 3.0.18 are vulnerable to malicious API requests which can crash the API server and cause denial of service to legitimate clients. Without a configured webhook.bitbucketserver.secret, Argo CD's /api/webhook endpoint crashes when receiving a malformed Bitbucket Server payload (non-array repository.links.clone field). A single unauthenticated request triggers CrashLoopBackOff, and targeting all replicas causes complete API outage. This issue is fixed in versions 2.14.20, 3.2.0-rc2, 3.1.8 and 3.0.19.
CVE-2023-28760 2025-10-02 7.5 High
TP-Link AX1800 WiFi 6 Router (Archer AX21) devices allow unauthenticated attackers (on the LAN) to execute arbitrary code as root via the db_dir field to minidlnad. The attacker obtains the ability to modify files.db, and that can be used to reach a stack-based buffer overflow in minidlna-1.1.2/upnpsoap.c. Exploitation requires that a USB flash drive is connected to the router (customers often do this to make a \\192.168.0.1 share available on their local network).
CVE-2023-53499 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: virtio_net: Fix error unwinding of XDP initialization When initializing XDP in virtnet_open(), some rq xdp initialization may hit an error causing net device open failed. However, previous rqs have already initialized XDP and enabled NAPI, which is not the expected behavior. Need to roll back the previous rq initialization to avoid leaks in error unwinding of init code. Also extract helper functions of disable and enable queue pairs. Use newly introduced disable helper function in error unwinding and virtnet_close. Use enable helper function in virtnet_open.
CVE-2023-53500 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: fix slab-use-after-free in decode_session6 When the xfrm device is set to the qdisc of the sfb type, the cb field of the sent skb may be modified during enqueuing. Then, slab-use-after-free may occur when the xfrm device sends IPv6 packets. The stack information is as follows: BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890 Read of size 1 at addr ffff8881111458ef by task swapper/3/0 CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0xd9/0x150 print_address_description.constprop.0+0x2c/0x3c0 kasan_report+0x11d/0x130 decode_session6+0x103f/0x1890 __xfrm_decode_session+0x54/0xb0 xfrmi_xmit+0x173/0x1ca0 dev_hard_start_xmit+0x187/0x700 sch_direct_xmit+0x1a3/0xc30 __qdisc_run+0x510/0x17a0 __dev_queue_xmit+0x2215/0x3b10 neigh_connected_output+0x3c2/0x550 ip6_finish_output2+0x55a/0x1550 ip6_finish_output+0x6b9/0x1270 ip6_output+0x1f1/0x540 ndisc_send_skb+0xa63/0x1890 ndisc_send_rs+0x132/0x6f0 addrconf_rs_timer+0x3f1/0x870 call_timer_fn+0x1a0/0x580 expire_timers+0x29b/0x4b0 run_timer_softirq+0x326/0x910 __do_softirq+0x1d4/0x905 irq_exit_rcu+0xb7/0x120 sysvec_apic_timer_interrupt+0x97/0xc0 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:intel_idle_hlt+0x23/0x30 Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4 RSP: 0018:ffffc90000197d78 EFLAGS: 00000246 RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5 RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50 RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001 R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000 cpuidle_enter_state+0xd3/0x6f0 cpuidle_enter+0x4e/0xa0 do_idle+0x2fe/0x3c0 cpu_startup_entry+0x18/0x20 start_secondary+0x200/0x290 secondary_startup_64_no_verify+0x167/0x16b </TASK> Allocated by task 939: kasan_save_stack+0x22/0x40 kasan_set_track+0x25/0x30 __kasan_slab_alloc+0x7f/0x90 kmem_cache_alloc_node+0x1cd/0x410 kmalloc_reserve+0x165/0x270 __alloc_skb+0x129/0x330 inet6_ifa_notify+0x118/0x230 __ipv6_ifa_notify+0x177/0xbe0 addrconf_dad_completed+0x133/0xe00 addrconf_dad_work+0x764/0x1390 process_one_work+0xa32/0x16f0 worker_thread+0x67d/0x10c0 kthread+0x344/0x440 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff888111145800 which belongs to the cache skbuff_small_head of size 640 The buggy address is located 239 bytes inside of freed 640-byte region [ffff888111145800, ffff888111145a80) As commit f855691975bb ("xfrm6: Fix the nexthdr offset in _decode_session6.") showed, xfrm_decode_session was originally intended only for the receive path. IP6CB(skb)->nhoff is not set during transmission. Therefore, set the cb field in the skb to 0 before sending packets.
CVE-2023-53509 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: qed: allow sleep in qed_mcp_trace_dump() By default, qed_mcp_cmd_and_union() delays 10us at a time in a loop that can run 500K times, so calls to qed_mcp_nvm_rd_cmd() may block the current thread for over 5s. We observed thread scheduling delays over 700ms in production, with stacktraces pointing to this code as the culprit. qed_mcp_trace_dump() is called from ethtool, so sleeping is permitted. It already can sleep in qed_mcp_halt(), which calls qed_mcp_cmd(). Add a "can sleep" parameter to qed_find_nvram_image() and qed_nvram_read() so they can sleep during qed_mcp_trace_dump(). qed_mcp_trace_get_meta_info() and qed_mcp_trace_read_meta(), called only by qed_mcp_trace_dump(), allow these functions to sleep. I can't tell if the other caller (qed_grc_dump_mcp_hw_dump()) can sleep, so keep b_can_sleep set to false when it calls these functions. An example stacktrace from a custom warning we added to the kernel showing a thread that has not scheduled despite long needing resched: [ 2745.362925,17] ------------[ cut here ]------------ [ 2745.362941,17] WARNING: CPU: 23 PID: 5640 at arch/x86/kernel/irq.c:233 do_IRQ+0x15e/0x1a0() [ 2745.362946,17] Thread not rescheduled for 744 ms after irq 99 [ 2745.362956,17] Modules linked in: ... [ 2745.363339,17] CPU: 23 PID: 5640 Comm: lldpd Tainted: P O 4.4.182+ #202104120910+6d1da174272d.61x [ 2745.363343,17] Hardware name: FOXCONN MercuryB/Quicksilver Controller, BIOS H11P1N09 07/08/2020 [ 2745.363346,17] 0000000000000000 ffff885ec07c3ed8 ffffffff8131eb2f ffff885ec07c3f20 [ 2745.363358,17] ffffffff81d14f64 ffff885ec07c3f10 ffffffff81072ac2 ffff88be98ed0000 [ 2745.363369,17] 0000000000000063 0000000000000174 0000000000000074 0000000000000000 [ 2745.363379,17] Call Trace: [ 2745.363382,17] <IRQ> [<ffffffff8131eb2f>] dump_stack+0x8e/0xcf [ 2745.363393,17] [<ffffffff81072ac2>] warn_slowpath_common+0x82/0xc0 [ 2745.363398,17] [<ffffffff81072b4c>] warn_slowpath_fmt+0x4c/0x50 [ 2745.363404,17] [<ffffffff810d5a8e>] ? rcu_irq_exit+0xae/0xc0 [ 2745.363408,17] [<ffffffff817c99fe>] do_IRQ+0x15e/0x1a0 [ 2745.363413,17] [<ffffffff817c7ac9>] common_interrupt+0x89/0x89 [ 2745.363416,17] <EOI> [<ffffffff8132aa74>] ? delay_tsc+0x24/0x50 [ 2745.363425,17] [<ffffffff8132aa04>] __udelay+0x34/0x40 [ 2745.363457,17] [<ffffffffa04d45ff>] qed_mcp_cmd_and_union+0x36f/0x7d0 [qed] [ 2745.363473,17] [<ffffffffa04d5ced>] qed_mcp_nvm_rd_cmd+0x4d/0x90 [qed] [ 2745.363490,17] [<ffffffffa04e1dc7>] qed_mcp_trace_dump+0x4a7/0x630 [qed] [ 2745.363504,17] [<ffffffffa04e2556>] ? qed_fw_asserts_dump+0x1d6/0x1f0 [qed] [ 2745.363520,17] [<ffffffffa04e4ea7>] qed_dbg_mcp_trace_get_dump_buf_size+0x37/0x80 [qed] [ 2745.363536,17] [<ffffffffa04ea881>] qed_dbg_feature_size+0x61/0xa0 [qed] [ 2745.363551,17] [<ffffffffa04eb427>] qed_dbg_all_data_size+0x247/0x260 [qed] [ 2745.363560,17] [<ffffffffa0482c10>] qede_get_regs_len+0x30/0x40 [qede] [ 2745.363566,17] [<ffffffff816c9783>] ethtool_get_drvinfo+0xe3/0x190 [ 2745.363570,17] [<ffffffff816cc152>] dev_ethtool+0x1362/0x2140 [ 2745.363575,17] [<ffffffff8109bcc6>] ? finish_task_switch+0x76/0x260 [ 2745.363580,17] [<ffffffff817c2116>] ? __schedule+0x3c6/0x9d0 [ 2745.363585,17] [<ffffffff810dbd50>] ? hrtimer_start_range_ns+0x1d0/0x370 [ 2745.363589,17] [<ffffffff816c1e5b>] ? dev_get_by_name_rcu+0x6b/0x90 [ 2745.363594,17] [<ffffffff816de6a8>] dev_ioctl+0xe8/0x710 [ 2745.363599,17] [<ffffffff816a58a8>] sock_do_ioctl+0x48/0x60 [ 2745.363603,17] [<ffffffff816a5d87>] sock_ioctl+0x1c7/0x280 [ 2745.363608,17] [<ffffffff8111f393>] ? seccomp_phase1+0x83/0x220 [ 2745.363612,17] [<ffffffff811e3503>] do_vfs_ioctl+0x2b3/0x4e0 [ 2745.363616,17] [<ffffffff811e3771>] SyS_ioctl+0x41/0x70 [ 2745.363619,17] [<ffffffff817c6ffe>] entry_SYSCALL_64_fastpath+0x1e/0x79 [ 2745.363622,17] ---[ end trace f6954aa440266421 ]---
CVE-2023-53515 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: virtio-mmio: don't break lifecycle of vm_dev vm_dev has a separate lifecycle because it has a 'struct device' embedded. Thus, having a release callback for it is correct. Allocating the vm_dev struct with devres totally breaks this protection, though. Instead of waiting for the vm_dev release callback, the memory is freed when the platform_device is removed. Resulting in a use-after-free when finally the callback is to be called. To easily see the problem, compile the kernel with CONFIG_DEBUG_KOBJECT_RELEASE and unbind with sysfs. The fix is easy, don't use devres in this case. Found during my research about object lifetime problems.
CVE-2024-58267 2025-10-02 8 High
A vulnerability has been identified within Rancher Manager whereby the SAML authentication from the Rancher CLI tool is vulnerable to phishing attacks. The custom authentication protocol for SAML-based providers can be abused to steal Rancher’s authentication tokens.
CVE-2025-11020 2025-10-02 8.8 High
An attacker can obtain server information using Path Traversal vulnerability to conduct SQL Injection, which possibly exploits Unrestricted Upload of File with Dangerous Type vulnerability in MarkAny SafePC Enterprise on Windows, Linux.This issue affects SafePC Enterprise: V7.0.* (V7.0.YYYY.MM.DD) before V7.0.1, and V5.*.*.
CVE-2023-53516 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macvlan: add forgotten nla_policy for IFLA_MACVLAN_BC_CUTOFF The previous commit 954d1fa1ac93 ("macvlan: Add netlink attribute for broadcast cutoff") added one additional attribute named IFLA_MACVLAN_BC_CUTOFF to allow broadcast cutfoff. However, it forgot to describe the nla_policy at macvlan_policy (drivers/net/macvlan.c). Hence, this suppose NLA_S32 (4 bytes) integer can be faked as empty (0 bytes) by a malicious user, which could leads to OOB in heap just like CVE-2023-3773. To fix it, this commit just completes the nla_policy description for IFLA_MACVLAN_BC_CUTOFF. This enforces the length check and avoids the potential OOB read.
CVE-2023-53521 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix slab-out-of-bounds in ses_intf_remove() A fix for: BUG: KASAN: slab-out-of-bounds in ses_intf_remove+0x23f/0x270 [ses] Read of size 8 at addr ffff88a10d32e5d8 by task rmmod/12013 When edev->components is zero, accessing edev->component[0] members is wrong.
CVE-2023-53522 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex syzbot is reporting circular locking dependency between cpu_hotplug_lock and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core freezer logic") replaced atomic_inc() in freezer_apply_state() with static_branch_inc() which holds cpu_hotplug_lock. cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex cgroup_file_write() { cgroup_procs_write() { __cgroup_procs_write() { cgroup_procs_write_start() { cgroup_attach_lock() { cpus_read_lock() { percpu_down_read(&cpu_hotplug_lock); } percpu_down_write(&cgroup_threadgroup_rwsem); } } cgroup_attach_task() { cgroup_migrate() { cgroup_migrate_execute() { freezer_attach() { mutex_lock(&freezer_mutex); (...snipped...) } } } } (...snipped...) } } } freezer_mutex => cpu_hotplug_lock cgroup_file_write() { freezer_write() { freezer_change_state() { mutex_lock(&freezer_mutex); freezer_apply_state() { static_branch_inc(&freezer_active) { static_key_slow_inc() { cpus_read_lock(); static_key_slow_inc_cpuslocked(); cpus_read_unlock(); } } } mutex_unlock(&freezer_mutex); } } } Swap locking order by moving cpus_read_lock() in freezer_apply_state() to before mutex_lock(&freezer_mutex) in freezer_change_state().
CVE-2023-53528 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix unsafe drain work queue code If create_qp does not fully succeed it is possible for qp cleanup code to attempt to drain the send or recv work queues before the queues have been created causing a seg fault. This patch checks to see if the queues exist before attempting to drain them.