CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix potential race condition between napi_init and napi_enable
A race condition can happen if netdev is registered, but NAPI isn't
initialized yet, and meanwhile user space starts the netdev that will
enable NAPI. Then, it hits BUG_ON():
kernel BUG at net/core/dev.c:6423!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 417 Comm: iwd Not tainted 6.2.7-slab-dirty #3 eb0f5a8a9d91
Hardware name: LENOVO 21DL/LNVNB161216, BIOS JPCN20WW(V1.06) 09/20/2022
RIP: 0010:napi_enable+0x3f/0x50
Code: 48 89 c2 48 83 e2 f6 f6 81 89 08 00 00 02 74 0d 48 83 ...
RSP: 0018:ffffada1414f3548 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa01425802080 RCX: 0000000000000000
RDX: 00000000000002ff RSI: ffffada14e50c614 RDI: ffffa01425808dc0
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000100 R12: ffffa01425808f58
R13: 0000000000000000 R14: ffffa01423498940 R15: 0000000000000001
FS: 00007f5577c0a740(0000) GS:ffffa0169fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f5577a19972 CR3: 0000000125a7a000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
rtw89_pci_ops_start+0x1c/0x70 [rtw89_pci 6cbc75429515c181cbc386478d5cfb32ffc5a0f8]
rtw89_core_start+0xbe/0x160 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22]
rtw89_ops_start+0x26/0x40 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22]
drv_start+0x42/0x100 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2]
ieee80211_do_open+0x311/0x7d0 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2]
ieee80211_open+0x6a/0x90 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2]
__dev_open+0xe0/0x180
__dev_change_flags+0x1da/0x250
dev_change_flags+0x26/0x70
do_setlink+0x37c/0x12c0
? ep_poll_callback+0x246/0x290
? __nla_validate_parse+0x61/0xd00
? __wake_up_common_lock+0x8f/0xd0
To fix this, follow Jonas' suggestion to switch the order of these
functions and move register netdev to be the last step of PCI probe.
Also, correct the error handling of rtw89_core_register_hw(). |
In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: Correct devm device reference for hidinput input_dev name
Reference the HID device rather than the input device for the devm
allocation of the input_dev name. Referencing the input_dev would lead to a
use-after-free when the input_dev was unregistered and subsequently fires a
uevent that depends on the name. At the point of firing the uevent, the
name would be freed by devres management.
Use devm_kasprintf to simplify the logic for allocating memory and
formatting the input_dev name string. |
In the Linux kernel, the following vulnerability has been resolved:
media: vsp1: Replace vb2_is_streaming() with vb2_start_streaming_called()
The vsp1 driver uses the vb2_is_streaming() function in its .buf_queue()
handler to check if the .start_streaming() operation has been called,
and decide whether to just add the buffer to an internal queue, or also
trigger a hardware run. vb2_is_streaming() relies on the vb2_queue
structure's streaming field, which used to be set only after calling the
.start_streaming() operation.
Commit a10b21532574 ("media: vb2: add (un)prepare_streaming queue ops")
changed this, setting the .streaming field in vb2_core_streamon() before
enqueuing buffers to the driver and calling .start_streaming(). This
broke the vsp1 driver which now believes that .start_streaming() has
been called when it hasn't, leading to a crash:
[ 881.058705] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
[ 881.067495] Mem abort info:
[ 881.070290] ESR = 0x0000000096000006
[ 881.074042] EC = 0x25: DABT (current EL), IL = 32 bits
[ 881.079358] SET = 0, FnV = 0
[ 881.082414] EA = 0, S1PTW = 0
[ 881.085558] FSC = 0x06: level 2 translation fault
[ 881.090439] Data abort info:
[ 881.093320] ISV = 0, ISS = 0x00000006
[ 881.097157] CM = 0, WnR = 0
[ 881.100126] user pgtable: 4k pages, 48-bit VAs, pgdp=000000004fa51000
[ 881.106573] [0000000000000020] pgd=080000004f36e003, p4d=080000004f36e003, pud=080000004f7ec003, pmd=0000000000000000
[ 881.117217] Internal error: Oops: 0000000096000006 [#1] PREEMPT SMP
[ 881.123494] Modules linked in: rcar_fdp1 v4l2_mem2mem
[ 881.128572] CPU: 0 PID: 1271 Comm: yavta Tainted: G B 6.2.0-rc1-00023-g6c94e2e99343 #556
[ 881.138061] Hardware name: Renesas Salvator-X 2nd version board based on r8a77965 (DT)
[ 881.145981] pstate: 400000c5 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 881.152951] pc : vsp1_dl_list_add_body+0xa8/0xe0
[ 881.157580] lr : vsp1_dl_list_add_body+0x34/0xe0
[ 881.162206] sp : ffff80000c267710
[ 881.165522] x29: ffff80000c267710 x28: ffff000010938ae8 x27: ffff000013a8dd98
[ 881.172683] x26: ffff000010938098 x25: ffff000013a8dc00 x24: ffff000010ed6ba8
[ 881.179841] x23: ffff00000faa4000 x22: 0000000000000000 x21: 0000000000000020
[ 881.186998] x20: ffff00000faa4000 x19: 0000000000000000 x18: 0000000000000000
[ 881.194154] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 881.201309] x14: 0000000000000000 x13: 746e696174206c65 x12: ffff70000157043d
[ 881.208465] x11: 1ffff0000157043c x10: ffff70000157043c x9 : dfff800000000000
[ 881.215622] x8 : ffff80000ab821e7 x7 : 00008ffffea8fbc4 x6 : 0000000000000001
[ 881.222779] x5 : ffff80000ab821e0 x4 : ffff70000157043d x3 : 0000000000000020
[ 881.229936] x2 : 0000000000000020 x1 : ffff00000e4f6400 x0 : 0000000000000000
[ 881.237092] Call trace:
[ 881.239542] vsp1_dl_list_add_body+0xa8/0xe0
[ 881.243822] vsp1_video_pipeline_run+0x270/0x2a0
[ 881.248449] vsp1_video_buffer_queue+0x1c0/0x1d0
[ 881.253076] __enqueue_in_driver+0xbc/0x260
[ 881.257269] vb2_start_streaming+0x48/0x200
[ 881.261461] vb2_core_streamon+0x13c/0x280
[ 881.265565] vb2_streamon+0x3c/0x90
[ 881.269064] vsp1_video_streamon+0x2fc/0x3e0
[ 881.273344] v4l_streamon+0x50/0x70
[ 881.276844] __video_do_ioctl+0x2bc/0x5d0
[ 881.280861] video_usercopy+0x2a8/0xc80
[ 881.284704] video_ioctl2+0x20/0x40
[ 881.288201] v4l2_ioctl+0xa4/0xc0
[ 881.291525] __arm64_sys_ioctl+0xe8/0x110
[ 881.295543] invoke_syscall+0x68/0x190
[ 881.299303] el0_svc_common.constprop.0+0x88/0x170
[ 881.304105] do_el0_svc+0x4c/0xf0
[ 881.307430] el0_svc+0x4c/0xa0
[ 881.310494] el0t_64_sync_handler+0xbc/0x140
[ 881.314773] el0t_64_sync+0x190/0x194
[ 881.318450] Code: d50323bf d65f03c0 91008263 f9800071 (885f7c60)
[ 881.324551] ---[ end trace 0000000000000000 ]---
[ 881.329173] note: yavta[1271] exited with preempt_count 1
A different r
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
tcp_bpf: Call sk_msg_free() when tcp_bpf_send_verdict() fails to allocate psock->cork.
syzbot reported the splat below. [0]
The repro does the following:
1. Load a sk_msg prog that calls bpf_msg_cork_bytes(msg, cork_bytes)
2. Attach the prog to a SOCKMAP
3. Add a socket to the SOCKMAP
4. Activate fault injection
5. Send data less than cork_bytes
At 5., the data is carried over to the next sendmsg() as it is
smaller than the cork_bytes specified by bpf_msg_cork_bytes().
Then, tcp_bpf_send_verdict() tries to allocate psock->cork to hold
the data, but this fails silently due to fault injection + __GFP_NOWARN.
If the allocation fails, we need to revert the sk->sk_forward_alloc
change done by sk_msg_alloc().
Let's call sk_msg_free() when tcp_bpf_send_verdict fails to allocate
psock->cork.
The "*copied" also needs to be updated such that a proper error can
be returned to the caller, sendmsg. It fails to allocate psock->cork.
Nothing has been corked so far, so this patch simply sets "*copied"
to 0.
[0]:
WARNING: net/ipv4/af_inet.c:156 at inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156, CPU#1: syz-executor/5983
Modules linked in:
CPU: 1 UID: 0 PID: 5983 Comm: syz-executor Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156
Code: 0f 0b 90 e9 62 fe ff ff e8 7a db b5 f7 90 0f 0b 90 e9 95 fe ff ff e8 6c db b5 f7 90 0f 0b 90 e9 bb fe ff ff e8 5e db b5 f7 90 <0f> 0b 90 e9 e1 fe ff ff 89 f9 80 e1 07 80 c1 03 38 c1 0f 8c 9f fc
RSP: 0018:ffffc90000a08b48 EFLAGS: 00010246
RAX: ffffffff8a09d0b2 RBX: dffffc0000000000 RCX: ffff888024a23c80
RDX: 0000000000000100 RSI: 0000000000000fff RDI: 0000000000000000
RBP: 0000000000000fff R08: ffff88807e07c627 R09: 1ffff1100fc0f8c4
R10: dffffc0000000000 R11: ffffed100fc0f8c5 R12: ffff88807e07c380
R13: dffffc0000000000 R14: ffff88807e07c60c R15: 1ffff1100fc0f872
FS: 00005555604c4500(0000) GS:ffff888125af1000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555604df5c8 CR3: 0000000032b06000 CR4: 00000000003526f0
Call Trace:
<IRQ>
__sk_destruct+0x86/0x660 net/core/sock.c:2339
rcu_do_batch kernel/rcu/tree.c:2605 [inline]
rcu_core+0xca8/0x1770 kernel/rcu/tree.c:2861
handle_softirqs+0x286/0x870 kernel/softirq.c:579
__do_softirq kernel/softirq.c:613 [inline]
invoke_softirq kernel/softirq.c:453 [inline]
__irq_exit_rcu+0xca/0x1f0 kernel/softirq.c:680
irq_exit_rcu+0x9/0x30 kernel/softirq.c:696
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1052 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1052
</IRQ> |
In the Linux kernel, the following vulnerability has been resolved:
nfs/localio: restore creds before releasing pageio data
Otherwise if the nfsd filecache code releases the nfsd_file
immediately, it can trigger the BUG_ON(cred == current->cred) in
__put_cred() when it puts the nfsd_file->nf_file->f-cred. |
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix invalid algorithm for encoded extents
The current algorithm sanity checks do not properly apply to new
encoded extents.
Unify the algorithm check with Z_EROFS_COMPRESSION(_RUNTIME)_MAX
and ensure consistency with sbi->available_compr_algs. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: libsas: Fix use-after-free bug in smp_execute_task_sg()
When executing SMP task failed, the smp_execute_task_sg() calls del_timer()
to delete "slow_task->timer". However, if the timer handler
sas_task_internal_timedout() is running, the del_timer() in
smp_execute_task_sg() will not stop it and a UAF will happen. The process
is shown below:
(thread 1) | (thread 2)
smp_execute_task_sg() | sas_task_internal_timedout()
... |
del_timer() |
... | ...
sas_free_task(task) |
kfree(task->slow_task) //FREE|
| task->slow_task->... //USE
Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure
the timer handler have finished before the "task->slow_task" is
deallocated. |
In the Linux kernel, the following vulnerability has been resolved:
arm64: kexec: initialize kexec_buf struct in load_other_segments()
Patch series "kexec: Fix invalid field access".
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are cleanly
set, preventing future instances of uninitialized memory being used.
An initial fix was already landed for arm64[0], and this patchset fixes
the problem on the remaining arm64 code and on riscv, as raised by Mark.
Discussions about this problem could be found at[1][2].
This patch (of 3):
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are
cleanly set, preventing future instances of uninitialized memory being
used. |
In the Linux kernel, the following vulnerability has been resolved:
memory: of: Fix refcount leak bug in of_lpddr3_get_ddr_timings()
We should add the of_node_put() when breaking out of
for_each_child_of_node() as it will automatically increase
and decrease the refcount. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability()
Fixed coverity issue with resource leaks at variable "fw" going out of
scope leaks the storage it points to mt7921_check_offload_capability().
Addresses-Coverity-ID: 1527806 ("Resource leaks") |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix possible memleak when register 'hctx' failed
There's issue as follows when do fault injection test:
unreferenced object 0xffff888132a9f400 (size 512):
comm "insmod", pid 308021, jiffies 4324277909 (age 509.733s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 f4 a9 32 81 88 ff ff ...........2....
08 f4 a9 32 81 88 ff ff 00 00 00 00 00 00 00 00 ...2............
backtrace:
[<00000000e8952bb4>] kmalloc_node_trace+0x22/0xa0
[<00000000f9980e0f>] blk_mq_alloc_and_init_hctx+0x3f1/0x7e0
[<000000002e719efa>] blk_mq_realloc_hw_ctxs+0x1e6/0x230
[<000000004f1fda40>] blk_mq_init_allocated_queue+0x27e/0x910
[<00000000287123ec>] __blk_mq_alloc_disk+0x67/0xf0
[<00000000a2a34657>] 0xffffffffa2ad310f
[<00000000b173f718>] 0xffffffffa2af824a
[<0000000095a1dabb>] do_one_initcall+0x87/0x2a0
[<00000000f32fdf93>] do_init_module+0xdf/0x320
[<00000000cbe8541e>] load_module+0x3006/0x3390
[<0000000069ed1bdb>] __do_sys_finit_module+0x113/0x1b0
[<00000000a1a29ae8>] do_syscall_64+0x35/0x80
[<000000009cd878b0>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Fault injection context as follows:
kobject_add
blk_mq_register_hctx
blk_mq_sysfs_register
blk_register_queue
device_add_disk
null_add_dev.part.0 [null_blk]
As 'blk_mq_register_hctx' may already add some objects when failed halfway,
but there isn't do fallback, caller don't know which objects add failed.
To solve above issue just do fallback when add objects failed halfway in
'blk_mq_register_hctx'. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: drop all currently held locks if deadlock happens
If vc4_hdmi_reset_link() returns -EDEADLK, it means that a deadlock
happened in the locking context. This situation should be addressed by
dropping all currently held locks and block until the contended lock
becomes available. Currently, vc4 is not dealing with the deadlock
properly, producing the following output when PROVE_LOCKING is enabled:
[ 825.612809] ------------[ cut here ]------------
[ 825.612852] WARNING: CPU: 1 PID: 116 at drivers/gpu/drm/drm_modeset_lock.c:276 drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.613458] Modules linked in: 8021q mrp garp stp llc
raspberrypi_cpufreq brcmfmac brcmutil crct10dif_ce hci_uart cfg80211
btqca btbcm bluetooth vc4 raspberrypi_hwmon snd_soc_hdmi_codec cec
clk_raspberrypi ecdh_generic drm_display_helper ecc rfkill
drm_dma_helper drm_kms_helper pwm_bcm2835 bcm2835_thermal bcm2835_rng
rng_core i2c_bcm2835 drm fuse ip_tables x_tables ipv6
[ 825.613735] CPU: 1 PID: 116 Comm: kworker/1:2 Tainted: G W 6.1.0-rc6-01399-g941aae326315 #3
[ 825.613759] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT)
[ 825.613777] Workqueue: events output_poll_execute [drm_kms_helper]
[ 825.614038] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 825.614063] pc : drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.614603] lr : drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.614829] sp : ffff800008313bf0
[ 825.614844] x29: ffff800008313bf0 x28: ffffcd7778b8b000 x27: 0000000000000000
[ 825.614883] x26: 0000000000000001 x25: 0000000000000001 x24: ffff677cc35c2758
[ 825.614920] x23: ffffcd7707d01430 x22: ffffcd7707c3edc7 x21: 0000000000000001
[ 825.614958] x20: 0000000000000000 x19: ffff800008313c10 x18: 000000000000b6d3
[ 825.614995] x17: ffffcd777835e214 x16: ffffcd7777cef870 x15: fffff81000000000
[ 825.615033] x14: 0000000000000000 x13: 0000000000000099 x12: 0000000000000002
[ 825.615070] x11: 72917988020af800 x10: 72917988020af800 x9 : 72917988020af800
[ 825.615108] x8 : ffff677cc665e0a8 x7 : d00a8c180000110c x6 : ffffcd77774c0054
[ 825.615145] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
[ 825.615181] x2 : ffff677cc55e1880 x1 : ffffcd7777cef8ec x0 : ffff800008313c10
[ 825.615219] Call trace:
[ 825.615232] drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.615773] drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.616003] output_poll_execute+0xe4/0x224 [drm_kms_helper]
[ 825.616233] process_one_work+0x2b4/0x618
[ 825.616264] worker_thread+0x24c/0x464
[ 825.616288] kthread+0xec/0x110
[ 825.616310] ret_from_fork+0x10/0x20
[ 825.616335] irq event stamp: 7634
[ 825.616349] hardirqs last enabled at (7633): [<ffffcd777831ee90>] _raw_spin_unlock_irq+0x3c/0x78
[ 825.616384] hardirqs last disabled at (7634): [<ffffcd7778315a78>] __schedule+0x134/0x9f0
[ 825.616411] softirqs last enabled at (7630): [<ffffcd7707aacea0>] local_bh_enable+0x4/0x30 [ipv6]
[ 825.617019] softirqs last disabled at (7618): [<ffffcd7707aace70>] local_bh_disable+0x4/0x30 [ipv6]
[ 825.617586] ---[ end trace 0000000000000000 ]---
Therefore, deal with the deadlock as suggested by [1], using the
function drm_modeset_backoff().
[1] https://docs.kernel.org/gpu/drm-kms.html?highlight=kms#kms-locking |
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi: iscsi_tcp: Fix null-ptr-deref while calling getpeername()
Fix a NULL pointer crash that occurs when we are freeing the socket at the
same time we access it via sysfs.
The problem is that:
1. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() take
the frwd_lock and do sock_hold() then drop the frwd_lock. sock_hold()
does a get on the "struct sock".
2. iscsi_sw_tcp_release_conn() does sockfd_put() which does the last put
on the "struct socket" and that does __sock_release() which sets the
sock->ops to NULL.
3. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() then
call kernel_getpeername() which accesses the NULL sock->ops.
Above we do a get on the "struct sock", but we needed a get on the "struct
socket". Originally, we just held the frwd_lock the entire time but in
commit bcf3a2953d36 ("scsi: iscsi: iscsi_tcp: Avoid holding spinlock while
calling getpeername()") we switched to refcount based because the network
layer changed and started taking a mutex in that path, so we could no
longer hold the frwd_lock.
Instead of trying to maintain multiple refcounts, this just has us use a
mutex for accessing the socket in the interface code paths. |
In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Avoid double destroy of default endpoint
The rpmsg_dev_remove() in rpmsg_core is the place for releasing
this default endpoint.
So need to avoid destroying the default endpoint in
rpmsg_chrdev_eptdev_destroy(), this should be the same as
rpmsg_eptdev_release(). Otherwise there will be double destroy
issue that ept->refcount report warning:
refcount_t: underflow; use-after-free.
Call trace:
refcount_warn_saturate+0xf8/0x150
virtio_rpmsg_destroy_ept+0xd4/0xec
rpmsg_dev_remove+0x60/0x70
The issue can be reproduced by stopping remoteproc before
closing the /dev/rpmsgX. |
In the Linux kernel, the following vulnerability has been resolved:
sched: Fix sched_numa_find_nth_cpu() if mask offline
sched_numa_find_nth_cpu() uses a bsearch to look for the 'closest'
CPU in sched_domains_numa_masks and given cpus mask. However they
might not intersect if all CPUs in the cpus mask are offline. bsearch
will return NULL in that case, bail out instead of dereferencing a
bogus pointer.
The previous behaviour lead to this bug when using maxcpus=4 on an
rk3399 (LLLLbb) (i.e. booting with all big CPUs offline):
[ 1.422922] Unable to handle kernel paging request at virtual address ffffff8000000000
[ 1.423635] Mem abort info:
[ 1.423889] ESR = 0x0000000096000006
[ 1.424227] EC = 0x25: DABT (current EL), IL = 32 bits
[ 1.424715] SET = 0, FnV = 0
[ 1.424995] EA = 0, S1PTW = 0
[ 1.425279] FSC = 0x06: level 2 translation fault
[ 1.425735] Data abort info:
[ 1.425998] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000
[ 1.426499] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 1.426952] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 1.427428] swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000004a9f000
[ 1.428038] [ffffff8000000000] pgd=18000000f7fff403, p4d=18000000f7fff403, pud=18000000f7fff403, pmd=0000000000000000
[ 1.429014] Internal error: Oops: 0000000096000006 [#1] SMP
[ 1.429525] Modules linked in:
[ 1.429813] CPU: 3 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc4-dirty #343 PREEMPT
[ 1.430559] Hardware name: Pine64 RockPro64 v2.1 (DT)
[ 1.431012] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1.431634] pc : sched_numa_find_nth_cpu+0x2a0/0x488
[ 1.432094] lr : sched_numa_find_nth_cpu+0x284/0x488
[ 1.432543] sp : ffffffc084e1b960
[ 1.432843] x29: ffffffc084e1b960 x28: ffffff80078a8800 x27: ffffffc0846eb1d0
[ 1.433495] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 1.434144] x23: 0000000000000000 x22: fffffffffff7f093 x21: ffffffc081de6378
[ 1.434792] x20: 0000000000000000 x19: 0000000ffff7f093 x18: 00000000ffffffff
[ 1.435441] x17: 3030303866666666 x16: 66663d736b73616d x15: ffffffc104e1b5b7
[ 1.436091] x14: 0000000000000000 x13: ffffffc084712860 x12: 0000000000000372
[ 1.436739] x11: 0000000000000126 x10: ffffffc08476a860 x9 : ffffffc084712860
[ 1.437389] x8 : 00000000ffffefff x7 : ffffffc08476a860 x6 : 0000000000000000
[ 1.438036] x5 : 000000000000bff4 x4 : 0000000000000000 x3 : 0000000000000000
[ 1.438683] x2 : 0000000000000000 x1 : ffffffc0846eb000 x0 : ffffff8000407b68
[ 1.439332] Call trace:
[ 1.439559] sched_numa_find_nth_cpu+0x2a0/0x488 (P)
[ 1.440016] smp_call_function_any+0xc8/0xd0
[ 1.440416] armv8_pmu_init+0x58/0x27c
[ 1.440770] armv8_cortex_a72_pmu_init+0x20/0x2c
[ 1.441199] arm_pmu_device_probe+0x1e4/0x5e8
[ 1.441603] armv8_pmu_device_probe+0x1c/0x28
[ 1.442007] platform_probe+0x5c/0xac
[ 1.442347] really_probe+0xbc/0x298
[ 1.442683] __driver_probe_device+0x78/0x12c
[ 1.443087] driver_probe_device+0xdc/0x160
[ 1.443475] __driver_attach+0x94/0x19c
[ 1.443833] bus_for_each_dev+0x74/0xd4
[ 1.444190] driver_attach+0x24/0x30
[ 1.444525] bus_add_driver+0xe4/0x208
[ 1.444874] driver_register+0x60/0x128
[ 1.445233] __platform_driver_register+0x24/0x30
[ 1.445662] armv8_pmu_driver_init+0x28/0x4c
[ 1.446059] do_one_initcall+0x44/0x25c
[ 1.446416] kernel_init_freeable+0x1dc/0x3bc
[ 1.446820] kernel_init+0x20/0x1d8
[ 1.447151] ret_from_fork+0x10/0x20
[ 1.447493] Code: 90022e21 f000e5f5 910de2b5 2a1703e2 (f8767803)
[ 1.448040] ---[ end trace 0000000000000000 ]---
[ 1.448483] note: swapper/0[1] exited with preempt_count 1
[ 1.449047] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
[ 1.449741] SMP: stopping secondary CPUs
[ 1.450105] Kernel Offset: disabled
[ 1.450419] CPU features: 0x000000,00080000,20002001,0400421b
[
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix potential leak in rtw89_append_probe_req_ie()
Do `kfree_skb(new)` before `goto out` to prevent potential leak. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Check that sock is valid before iscsi_set_param()
The validity of sock should be checked before assignment to avoid incorrect
values. Commit 57569c37f0ad ("scsi: iscsi: iscsi_tcp: Fix null-ptr-deref
while calling getpeername()") introduced this change which may lead to
inconsistent values of tcp_sw_conn->sendpage and conn->datadgst_en.
Fix the issue by moving the position of the assignment. |
In the Linux kernel, the following vulnerability has been resolved:
efi: ssdt: Don't free memory if ACPI table was loaded successfully
Amadeusz reports KASAN use-after-free errors introduced by commit
3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from
variables"). The problem appears to be that the memory that holds the
new ACPI table is now freed unconditionally, instead of only when the
ACPI core reported a failure to load the table.
So let's fix this, by omitting the kfree() on success. |
In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: lvds: fix PM usage counter unbalance in poweron
pm_runtime_get_sync will increment pm usage counter even it failed.
Forgetting to putting operation will result in reference leak here.
We fix it by replacing it with the newest pm_runtime_resume_and_get
to keep usage counter balanced. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring: wait interruptibly for request completions on exit
WHen the ring exits, cleanup is done and the final cancelation and
waiting on completions is done by io_ring_exit_work. That function is
invoked by kworker, which doesn't take any signals. Because of that, it
doesn't really matter if we wait for completions in TASK_INTERRUPTIBLE
or TASK_UNINTERRUPTIBLE state. However, it does matter to the hung task
detection checker!
Normally we expect cancelations and completions to happen rather
quickly. Some test cases, however, will exit the ring and park the
owning task stopped (eg via SIGSTOP). If the owning task needs to run
task_work to complete requests, then io_ring_exit_work won't make any
progress until the task is runnable again. Hence io_ring_exit_work can
trigger the hung task detection, which is particularly problematic if
panic-on-hung-task is enabled.
As the ring exit doesn't take signals to begin with, have it wait
interruptibly rather than uninterruptibly. io_uring has a separate
stuck-exit warning that triggers independently anyway, so we're not
really missing anything by making this switch. |