| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct ECDHE-to-ECDH downgrade attacks and trigger a loss of forward secrecy by omitting the ServerKeyExchange message. |
| The ssl3_get_cert_verify function in s3_srvr.c in OpenSSL 1.0.0 before 1.0.0p and 1.0.1 before 1.0.1k accepts client authentication with a Diffie-Hellman (DH) certificate without requiring a CertificateVerify message, which allows remote attackers to obtain access without knowledge of a private key via crafted TLS Handshake Protocol traffic to a server that recognizes a Certification Authority with DH support. |
| Memory leak in the dtls1_buffer_record function in d1_pkt.c in OpenSSL 1.0.0 before 1.0.0p and 1.0.1 before 1.0.1k allows remote attackers to cause a denial of service (memory consumption) by sending many duplicate records for the next epoch, leading to failure of replay detection. |
| The PKCS#7 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly handle a lack of outer ContentInfo, which allows attackers to cause a denial of service (NULL pointer dereference and application crash) by leveraging an application that processes arbitrary PKCS#7 data and providing malformed data with ASN.1 encoding, related to crypto/pkcs7/pk7_doit.c and crypto/pkcs7/pk7_lib.c. |
| Integer underflow in the EVP_DecodeUpdate function in crypto/evp/encode.c in the base64-decoding implementation in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via crafted base64 data that triggers a buffer overflow. |
| The X509_cmp_time function in crypto/x509/x509_vfy.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted length field in ASN1_TIME data, as demonstrated by an attack against a server that supports client authentication with a custom verification callback. |
| Race condition in the ssl3_get_new_session_ticket function in ssl/s3_clnt.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b, when used for a multi-threaded client, allows remote attackers to cause a denial of service (double free and application crash) or possibly have unspecified other impact by providing a NewSessionTicket during an attempt to reuse a ticket that had been obtained earlier. |
| The do_free_upto function in crypto/cms/cms_smime.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (infinite loop) via vectors that trigger a NULL value of a BIO data structure, as demonstrated by an unrecognized X.660 OID for a hash function. |
| crypto/rsa/rsa_ameth.c in OpenSSL 1.0.1 before 1.0.1q and 1.0.2 before 1.0.2e allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an RSA PSS ASN.1 signature that lacks a mask generation function parameter. |
| Race condition in a certain Red Hat patch to the PRNG lock implementation in the ssleay_rand_bytes function in OpenSSL, as distributed in openssl-1.0.1e-25.el7 in Red Hat Enterprise Linux (RHEL) 7 and other products, allows remote attackers to cause a denial of service (application crash) by establishing many TLS sessions to a multithreaded server, leading to use of a negative value for a certain length field. |
| Memory leak in the SRP_VBASE_get_by_user implementation in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory consumption) by providing an invalid username in a connection attempt, related to apps/s_server.c and crypto/srp/srp_vfy.c. |
| Double free vulnerability in the dsa_priv_decode function in crypto/dsa/dsa_ameth.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a malformed DSA private key. |
| Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data. |
| The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, does not properly convey a DHE_EXPORT choice, which allows man-in-the-middle attackers to conduct cipher-downgrade attacks by rewriting a ClientHello with DHE replaced by DHE_EXPORT and then rewriting a ServerHello with DHE_EXPORT replaced by DHE, aka the "Logjam" issue. |
| The do_ssl3_write function in s3_pkt.c in OpenSSL 1.x through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, does not properly manage a buffer pointer during certain recursive calls, which allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via vectors that trigger an alert condition. |
| OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability. |
| ssl/t1_lib.c in OpenSSL 0.9.8h through 0.9.8q and 1.0.0 through 1.0.0c allows remote attackers to cause a denial of service (crash), and possibly obtain sensitive information in applications that use OpenSSL, via a malformed ClientHello handshake message that triggers an out-of-bounds memory access, aka "OCSP stapling vulnerability." |
| crypto/bn/bn_nist.c in OpenSSL before 0.9.8h on 32-bit platforms, as used in stunnel and other products, in certain circumstances involving ECDH or ECDHE cipher suites, uses an incorrect modular reduction algorithm in its implementation of the P-256 and P-384 NIST elliptic curves, which allows remote attackers to obtain the private key of a TLS server via multiple handshake attempts. |
| The ssl3_take_mac function in ssl/s3_both.c in OpenSSL 1.0.1 before 1.0.1f allows remote TLS servers to cause a denial of service (NULL pointer dereference and application crash) via a crafted Next Protocol Negotiation record in a TLS handshake. |
| OpenSSL before 0.9.8m does not check for a NULL return value from bn_wexpand function calls in (1) crypto/bn/bn_div.c, (2) crypto/bn/bn_gf2m.c, (3) crypto/ec/ec2_smpl.c, and (4) engines/e_ubsec.c, which has unspecified impact and context-dependent attack vectors. |