| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Race condition in the ssl3_read_bytes function in s3_pkt.c in OpenSSL through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, allows remote attackers to inject data across sessions or cause a denial of service (use-after-free and parsing error) via an SSL connection in a multithreaded environment. |
| The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c. |
| The multi-block feature in the ssl3_write_bytes function in s3_pkt.c in OpenSSL 1.0.2 before 1.0.2a on 64-bit x86 platforms with AES NI support does not properly handle certain non-blocking I/O cases, which allows remote attackers to cause a denial of service (pointer corruption and application crash) via unspecified vectors. |
| The ssl3_get_client_key_exchange function in s3_srvr.c in OpenSSL 1.0.2 before 1.0.2a, when client authentication and an ephemeral Diffie-Hellman ciphersuite are enabled, allows remote attackers to cause a denial of service (daemon crash) via a ClientKeyExchange message with a length of zero. |
| The ssl3_read_bytes function in record/rec_layer_s3.c in OpenSSL 1.1.0 before 1.1.0a allows remote attackers to cause a denial of service (infinite loop) by triggering a zero-length record in an SSL_peek call. |
| The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169. |
| Integer overflow in the EVP_EncodeUpdate function in crypto/evp/encode.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of binary data. |
| The ASN1_TFLG_COMBINE implementation in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zh, 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1q, and 1.0.2 before 1.0.2e mishandles errors caused by malformed X509_ATTRIBUTE data, which allows remote attackers to obtain sensitive information from process memory by triggering a decoding failure in a PKCS#7 or CMS application. |
| Double free vulnerability in the dsa_priv_decode function in crypto/dsa/dsa_ameth.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a malformed DSA private key. |
| The ASN.1 signature-verification implementation in the rsa_item_verify function in crypto/rsa/rsa_ameth.c in OpenSSL 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via crafted RSA PSS parameters to an endpoint that uses the certificate-verification feature. |
| OpenSSL through 1.0.2h incorrectly uses pointer arithmetic for heap-buffer boundary checks, which might allow remote attackers to cause a denial of service (integer overflow and application crash) or possibly have unspecified other impact by leveraging unexpected malloc behavior, related to s3_srvr.c, ssl_sess.c, and t1_lib.c. |
| crypto/x509/x509_vfy.c in OpenSSL 1.0.2i allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) by triggering a CRL operation. |
| The X509_verify_cert function in crypto/x509/x509_vfy.c in OpenSSL 1.0.1n, 1.0.1o, 1.0.2b, and 1.0.2c does not properly process X.509 Basic Constraints cA values during identification of alternative certificate chains, which allows remote attackers to spoof a Certification Authority role and trigger unintended certificate verifications via a valid leaf certificate. |
| The DTLS implementation in OpenSSL before 1.1.0 does not properly restrict the lifetime of queue entries associated with unused out-of-order messages, which allows remote attackers to cause a denial of service (memory consumption) by maintaining many crafted DTLS sessions simultaneously, related to d1_lib.c, statem_dtls.c, statem_lib.c, and statem_srvr.c. |
| The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack. |
| The SSLv2 protocol, as used in OpenSSL before 1.0.1s and 1.0.2 before 1.0.2g and other products, requires a server to send a ServerVerify message before establishing that a client possesses certain plaintext RSA data, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, aka a "DROWN" attack. |
| The fmtstr function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g improperly calculates string lengths, which allows remote attackers to cause a denial of service (overflow and out-of-bounds read) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-2842. |
| The do_ssl3_write function in s3_pkt.c in OpenSSL 1.x through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, does not properly manage a buffer pointer during certain recursive calls, which allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via vectors that trigger an alert condition. |
| The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct ECDHE-to-ECDH downgrade attacks and trigger a loss of forward secrecy by omitting the ServerKeyExchange message. |
| Use-after-free vulnerability in the d2i_ECPrivateKey function in crypto/ec/ec_asn1.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via a malformed Elliptic Curve (EC) private-key file that is improperly handled during import. |