| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dma: fix call order in dmam_free_coherent
dmam_free_coherent() frees a DMA allocation, which makes the
freed vaddr available for reuse, then calls devres_destroy()
to remove and free the data structure used to track the DMA
allocation. Between the two calls, it is possible for a
concurrent task to make an allocation with the same vaddr
and add it to the devres list.
If this happens, there will be two entries in the devres list
with the same vaddr and devres_destroy() can free the wrong
entry, triggering the WARN_ON() in dmam_match.
Fix by destroying the devres entry before freeing the DMA
allocation.
kokonut //net/encryption
http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 |
| In the Linux kernel, the following vulnerability has been resolved:
mm: huge_memory: use !CONFIG_64BIT to relax huge page alignment on 32 bit machines
Yves-Alexis Perez reported commit 4ef9ad19e176 ("mm: huge_memory: don't
force huge page alignment on 32 bit") didn't work for x86_32 [1]. It is
because x86_32 uses CONFIG_X86_32 instead of CONFIG_32BIT.
!CONFIG_64BIT should cover all 32 bit machines.
[1] https://lore.kernel.org/linux-mm/CAHbLzkr1LwH3pcTgM+aGQ31ip2bKqiqEQ8=FQB+t2c3dhNKNHA@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
wireguard: allowedips: avoid unaligned 64-bit memory accesses
On the parisc platform, the kernel issues kernel warnings because
swap_endian() tries to load a 128-bit IPv6 address from an unaligned
memory location:
Kernel: unaligned access to 0x55f4688c in wg_allowedips_insert_v6+0x2c/0x80 [wireguard] (iir 0xf3010df)
Kernel: unaligned access to 0x55f46884 in wg_allowedips_insert_v6+0x38/0x80 [wireguard] (iir 0xf2010dc)
Avoid such unaligned memory accesses by instead using the
get_unaligned_be64() helper macro.
[Jason: replace src[8] in original patch with src+8] |
| In the Linux kernel, the following vulnerability has been resolved:
IB/core: Implement a limit on UMAD receive List
The existing behavior of ib_umad, which maintains received MAD
packets in an unbounded list, poses a risk of uncontrolled growth.
As user-space applications extract packets from this list, the rate
of extraction may not match the rate of incoming packets, leading
to potential list overflow.
To address this, we introduce a limit to the size of the list. After
considering typical scenarios, such as OpenSM processing, which can
handle approximately 100k packets per second, and the 1-second retry
timeout for most packets, we set the list size limit to 200k. Packets
received beyond this limit are dropped, assuming they are likely timed
out by the time they are handled by user-space.
Notably, packets queued on the receive list due to reasons like
timed-out sends are preserved even when the list is full. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: Remove WARN() from __xdp_reg_mem_model()
syzkaller reports a warning in __xdp_reg_mem_model().
The warning occurs only if __mem_id_init_hash_table() returns an error. It
returns the error in two cases:
1. memory allocation fails;
2. rhashtable_init() fails when some fields of rhashtable_params
struct are not initialized properly.
The second case cannot happen since there is a static const rhashtable_params
struct with valid fields. So, warning is only triggered when there is a
problem with memory allocation.
Thus, there is no sense in using WARN() to handle this error and it can be
safely removed.
WARNING: CPU: 0 PID: 5065 at net/core/xdp.c:299 __xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
CPU: 0 PID: 5065 Comm: syz-executor883 Not tainted 6.8.0-syzkaller-05271-gf99c5f563c17 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:__xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
Call Trace:
xdp_reg_mem_model+0x22/0x40 net/core/xdp.c:344
xdp_test_run_setup net/bpf/test_run.c:188 [inline]
bpf_test_run_xdp_live+0x365/0x1e90 net/bpf/test_run.c:377
bpf_prog_test_run_xdp+0x813/0x11b0 net/bpf/test_run.c:1267
bpf_prog_test_run+0x33a/0x3b0 kernel/bpf/syscall.c:4240
__sys_bpf+0x48d/0x810 kernel/bpf/syscall.c:5649
__do_sys_bpf kernel/bpf/syscall.c:5738 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5736 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5736
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Found by Linux Verification Center (linuxtesting.org) with syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overrunning reservations in ringbuf
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that "owns" the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk's
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A's header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We've tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: davinci: Don't strip remove function when driver is builtin
Using __exit for the remove function results in the remove callback being
discarded with CONFIG_MMC_DAVINCI=y. When such a device gets unbound (e.g.
using sysfs or hotplug), the driver is just removed without the cleanup
being performed. This results in resource leaks. Fix it by compiling in the
remove callback unconditionally.
This also fixes a W=1 modpost warning:
WARNING: modpost: drivers/mmc/host/davinci_mmc: section mismatch in
reference: davinci_mmcsd_driver+0x10 (section: .data) ->
davinci_mmcsd_remove (section: .exit.text) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc: fix vmalloc which may return null if called with __GFP_NOFAIL
commit a421ef303008 ("mm: allow !GFP_KERNEL allocations for kvmalloc")
includes support for __GFP_NOFAIL, but it presents a conflict with commit
dd544141b9eb ("vmalloc: back off when the current task is OOM-killed"). A
possible scenario is as follows:
process-a
__vmalloc_node_range(GFP_KERNEL | __GFP_NOFAIL)
__vmalloc_area_node()
vm_area_alloc_pages()
--> oom-killer send SIGKILL to process-a
if (fatal_signal_pending(current)) break;
--> return NULL;
To fix this, do not check fatal_signal_pending() in vm_area_alloc_pages()
if __GFP_NOFAIL set.
This issue occurred during OPLUS KASAN TEST. Below is part of the log
-> oom-killer sends signal to process
[65731.222840] [ T1308] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0,global_oom,task_memcg=/apps/uid_10198,task=gs.intelligence,pid=32454,uid=10198
[65731.259685] [T32454] Call trace:
[65731.259698] [T32454] dump_backtrace+0xf4/0x118
[65731.259734] [T32454] show_stack+0x18/0x24
[65731.259756] [T32454] dump_stack_lvl+0x60/0x7c
[65731.259781] [T32454] dump_stack+0x18/0x38
[65731.259800] [T32454] mrdump_common_die+0x250/0x39c [mrdump]
[65731.259936] [T32454] ipanic_die+0x20/0x34 [mrdump]
[65731.260019] [T32454] atomic_notifier_call_chain+0xb4/0xfc
[65731.260047] [T32454] notify_die+0x114/0x198
[65731.260073] [T32454] die+0xf4/0x5b4
[65731.260098] [T32454] die_kernel_fault+0x80/0x98
[65731.260124] [T32454] __do_kernel_fault+0x160/0x2a8
[65731.260146] [T32454] do_bad_area+0x68/0x148
[65731.260174] [T32454] do_mem_abort+0x151c/0x1b34
[65731.260204] [T32454] el1_abort+0x3c/0x5c
[65731.260227] [T32454] el1h_64_sync_handler+0x54/0x90
[65731.260248] [T32454] el1h_64_sync+0x68/0x6c
[65731.260269] [T32454] z_erofs_decompress_queue+0x7f0/0x2258
--> be->decompressed_pages = kvcalloc(be->nr_pages, sizeof(struct page *), GFP_KERNEL | __GFP_NOFAIL);
kernel panic by NULL pointer dereference.
erofs assume kvmalloc with __GFP_NOFAIL never return NULL.
[65731.260293] [T32454] z_erofs_runqueue+0xf30/0x104c
[65731.260314] [T32454] z_erofs_readahead+0x4f0/0x968
[65731.260339] [T32454] read_pages+0x170/0xadc
[65731.260364] [T32454] page_cache_ra_unbounded+0x874/0xf30
[65731.260388] [T32454] page_cache_ra_order+0x24c/0x714
[65731.260411] [T32454] filemap_fault+0xbf0/0x1a74
[65731.260437] [T32454] __do_fault+0xd0/0x33c
[65731.260462] [T32454] handle_mm_fault+0xf74/0x3fe0
[65731.260486] [T32454] do_mem_abort+0x54c/0x1b34
[65731.260509] [T32454] el0_da+0x44/0x94
[65731.260531] [T32454] el0t_64_sync_handler+0x98/0xb4
[65731.260553] [T32454] el0t_64_sync+0x198/0x19c |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix log recovery buffer allocation for the legacy h_size fixup
Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by
mkfs") added a fixup for incorrect h_size values used for the initial
umount record in old xfsprogs versions. Later commit 0c771b99d6c9
("xfs: clean up calculation of LR header blocks") cleaned up the log
reover buffer calculation, but stoped using the fixed up h_size value
to size the log recovery buffer, which can lead to an out of bounds
access when the incorrect h_size does not come from the old mkfs
tool, but a fuzzer.
Fix this by open coding xlog_logrec_hblks and taking the fixed h_size
into account for this calculation. |
| Amazon Ion is a Java implementation of the Ion data notation. Prior to version 1.10.5, a potential denial-of-service issue exists in `ion-java` for applications that use `ion-java` to deserialize Ion text encoded data, or deserialize Ion text or binary encoded data into the `IonValue` model and then invoke certain `IonValue` methods on that in-memory representation. An actor could craft Ion data that, when loaded by the affected application and/or processed using the `IonValue` model, results in a `StackOverflowError` originating from the `ion-java` library. The patch is included in `ion-java` 1.10.5. As a workaround, do not load data which originated from an untrusted source or that could have been tampered with. |
| JavaScript preprocessing, webhooks and global scripts can cause uncontrolled CPU, memory, and disk I/O utilization. Preprocessing/webhook/global script configuration and testing are only available to Administrative roles (Admin and Superadmin). Administrative privileges should be typically granted to users who need to perform tasks that require more control over the system. The security risk is limited because not all users have this level of access. |
| An issue was discovered in Dnsmasq before 2.90. The default maximum EDNS.0 UDP packet size was set to 4096 but should be 1232 because of DNS Flag Day 2020. |
| Apache Commons FileUpload before 1.5 does not limit the number of request parts to be processed resulting in the possibility of an attacker triggering a DoS with a malicious upload or series of uploads.
Note that, like all of the file upload limits, the
new configuration option (FileUploadBase#setFileCountMax) is not
enabled by default and must be explicitly configured. |
| XStream is an open source java library to serialize objects to XML and back again. Versions prior to 1.4.19 may allow a remote attacker to allocate 100% CPU time on the target system depending on CPU type or parallel execution of such a payload resulting in a denial of service only by manipulating the processed input stream. XStream 1.4.19 monitors and accumulates the time it takes to add elements to collections and throws an exception if a set threshold is exceeded. Users are advised to upgrade as soon as possible. Users unable to upgrade may set the NO_REFERENCE mode to prevent recursion. See GHSA-rmr5-cpv2-vgjf for further details on a workaround if an upgrade is not possible. |
| A flaw was found in the Linux kernel. Measuring usage of the shared memory does not scale with large shared memory segment counts which could lead to resource exhaustion and DoS. |
| The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.3, Safari 18.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. Processing web content may lead to a denial-of-service. |
| The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.4, macOS Ventura 13.7.3, macOS Sonoma 14.7.3, visionOS 2.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, tvOS 18.3. Parsing a file may lead to an unexpected app termination. |
| The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.3, macOS Sonoma 14.7.3. Parsing a file may lead to an unexpected app termination. |
| The issue was addressed with improved memory handling. This issue is fixed in iPadOS 17.7.4, macOS Ventura 13.7.3, macOS Sonoma 14.7.3, visionOS 2.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. Processing an image may lead to a denial-of-service. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: storvsc: Ratelimit warning logs to prevent VM denial of service
If there's a persistent error in the hypervisor, the SCSI warning for
failed I/O can flood the kernel log and max out CPU utilization,
preventing troubleshooting from the VM side. Ratelimit the warning so
it doesn't DoS the VM. |