| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An out-of-memory flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFRasterScanlineSize64() API. This flaw allows a remote attacker to cause a denial of service via a crafted input with a size smaller than 379 KB. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Check start of empty przs during init
After commit 30696378f68a ("pstore/ram: Do not treat empty buffers as
valid"), initialization would assume a prz was valid after seeing that
the buffer_size is zero (regardless of the buffer start position). This
unchecked start value means it could be outside the bounds of the buffer,
leading to future access panics when written to:
sysdump_panic_event+0x3b4/0x5b8
atomic_notifier_call_chain+0x54/0x90
panic+0x1c8/0x42c
die+0x29c/0x2a8
die_kernel_fault+0x68/0x78
__do_kernel_fault+0x1c4/0x1e0
do_bad_area+0x40/0x100
do_translation_fault+0x68/0x80
do_mem_abort+0x68/0xf8
el1_da+0x1c/0xc0
__raw_writeb+0x38/0x174
__memcpy_toio+0x40/0xac
persistent_ram_update+0x44/0x12c
persistent_ram_write+0x1a8/0x1b8
ramoops_pstore_write+0x198/0x1e8
pstore_console_write+0x94/0xe0
...
To avoid this, also check if the prz start is 0 during the initialization
phase. If not, the next prz sanity check case will discover it (start >
size) and zap the buffer back to a sane state.
[kees: update commit log with backtrace and clarifications] |
| A vulnerability was found in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. Affected by this vulnerability is the function AP_get_wireless_clientlist_setClientsName of the file mod_form.so. Performing manipulation of the argument clientsname_0 results in stack-based buffer overflow. The attack can be initiated remotely. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was identified in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This affects the function AP_get_wired_clientlist_setClientsName of the file mod_form.so. The manipulation of the argument clientsname_0 leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in Linksys RE6500, RE6250, RE6300, RE6350, RE7000 and RE9000 1.0.013.001/1.0.04.001/1.0.04.002/1.1.05.003/1.2.07.001. This vulnerability affects the function RE2000v2Repeater_get_wired_clientlist_setClientsName of the file mod_form.so. The manipulation of the argument clientsname_0 results in stack-based buffer overflow. The attack may be launched remotely. The exploit has been released to the public and may be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS's CLI could allow an authenticated privileged user to execute arbitrary code via a specially crafted CLI command.This vulnerability affects Fireware OS 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS's CLI could allow an authenticated privileged user to execute arbitrary code via specially crafted IPSec configuration CLI commands.This vulnerability affects Fireware OS 11.0 up to and including 11.12.4+541730, 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |
| An Out-of-bounds Write vulnerability in WatchGuard Fireware OS’s certificate request command could allow an authenticated privileged user to execute arbitrary code via specially crafted CLI commands.This vulnerability affects Fireware OS 12.0 up to and including 12.11.4, 12.5 up to and including 12.5.13, and 2025.1 up to and including 2025.1.2. |
| Secure Boot Security Feature Bypass Vulnerability |
| Microsoft Xbox Remote Code Execution Vulnerability |
| Windows Imaging Component Remote Code Execution Vulnerability |
| Kernel Streaming WOW Thunk Service Driver Elevation of Privilege Vulnerability |
| Windows Graphics Component Remote Code Execution Vulnerability |
| Microsoft Windows Performance Data Helper Library Remote Code Execution Vulnerability |
| Stack-based buffer overflow in Azure Application Gateway allows an unauthorized attacker to elevate privileges over a network. |
| SAP Web Dispatcher, Internet Communication Manager (ICM), and SAP Content Server allow an unauthenticated user to exploit logical errors that lead to a memory corruption vulnerability. This results in high impact on the availability with no impact on confidentiality or integrity of the application. |
| Suricata is a network IDS, IPS and NSM engine developed by the OISF (Open Information Security Foundation) and the Suricata community. Prior to versions 7.0.13 and 8.0.2, a stack overflow can occur on large HTTP file transfers if the user has increased the HTTP response body limit and enabled the logging of printable http bodies. This issue has been patched in versions 7.0.13 and 8.0.2. A workaround for this issue involves using default HTTP response body limits and/or disabling http-body-printable logging; body logging is disabled by default. |
| Stack-based buffer overflow in LoadOFF in bulletphysics bullet3 before 3.26 on all platforms allows remote attackers to execute arbitrary code via a crafted OFF file with an overlong initial token processed by the VHACD test utility or invoked indirectly through PyBullet's vhacd function. |
| Redis is an open source, in-memory database that persists on disk. In versions 8.2.0 and above, a user can run the XACKDEL command with multiple ID's and trigger a stack buffer overflow, which may potentially lead to remote code execution. This issue is fixed in version 8.2.3. To workaround this issue without patching the redis-server executable is to prevent users from executing XACKDEL operation. This can be done using ACL to restrict XACKDEL command. |
| Out-of-bounds write in cdfs_open_cue_track in libretro libretro-common latest on all platforms allows remote attackers to execute arbitrary code via a crafted .cue file with a file path exceeding PATH_MAX_LENGTH that is copied using memcpy into a fixed-size buffer. |