| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability has been identified in the installation/uninstallation of the Nessus Agent Tray App on Windows Hosts which could lead to escalation of privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Limit num_syncs to prevent oversized allocations
The exec and vm_bind ioctl allow userspace to specify an arbitrary
num_syncs value. Without bounds checking, a very large num_syncs
can force an excessively large allocation, leading to kernel warnings
from the page allocator as below.
Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request
exceeding this limit.
"
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124
...
Call Trace:
<TASK>
alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416
___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317
__kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348
__do_kmalloc_node mm/slub.c:4364 [inline]
__kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388
kmalloc_noprof include/linux/slab.h:909 [inline]
kmalloc_array_noprof include/linux/slab.h:948 [inline]
xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158
drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797
drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894
xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:598 [inline]
__se_sys_ioctl fs/ioctl.c:584 [inline]
__x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
"
v2: Add "Reported-by" and Cc stable kernels.
v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh)
v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt)
v5: Do the check at the top of the exec func. (Matt)
(cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c) |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_ishtp: Fix UAF after unbinding driver
After unbinding the driver, another kthread `cros_ec_console_log_work`
is still accessing the device, resulting an UAF and crash.
The driver doesn't unregister the EC device in .remove() which should
shutdown sub-devices synchronously. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was
initially created with a guest_memfd binding, as KVM doesn't support
toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling
KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag.
Failure to reject the new memslot results in a use-after-free due to KVM
not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY
change is easy enough, and can/will be done as a hardening measure (in
anticipation of KVM supporting dirty logging on guest_memfd at some point),
but fixing the use-after-free would only address the immediate symptom.
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm]
Write of size 8 at addr ffff8881111ae908 by task repro/745
CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xcb/0x5c0
kasan_report+0xb4/0xe0
kvm_gmem_release+0x362/0x400 [kvm]
__fput+0x2fa/0x9d0
task_work_run+0x12c/0x200
do_exit+0x6ae/0x2100
do_group_exit+0xa8/0x230
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0x737/0x740
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f581f2eac31
</TASK>
Allocated by task 745 on cpu 6 at 9.746971s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_kmalloc+0x77/0x90
kvm_set_memory_region.part.0+0x652/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 745 on cpu 6 at 9.747467s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x3b/0x60
kfree+0xf5/0x440
kvm_set_memslot+0x3c2/0x1160 [kvm]
kvm_set_memory_region.part.0+0x86a/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fw_tracer, Validate format string parameters
Add validation for format string parameters in the firmware tracer to
prevent potential security vulnerabilities and crashes from malformed
format strings received from firmware.
The firmware tracer receives format strings from the device firmware and
uses them to format trace messages. Without proper validation, bad
firmware could provide format strings with invalid format specifiers
(e.g., %s, %p, %n) that could lead to crashes, or other undefined
behavior.
Add mlx5_tracer_validate_params() to validate that all format specifiers
in trace strings are limited to safe integer/hex formats (%x, %d, %i,
%u, %llx, %lx, etc.). Reject strings containing other format types that
could be used to access arbitrary memory or cause crashes.
Invalid format strings are added to the trace output for visibility with
"BAD_FORMAT: " prefix. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix readahead reclaim deadlock
Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is
needed") skips allocating ff->release_args if the server does not
implement open. However in doing so, fuse_prepare_release() now skips
grabbing the reference on the inode, which makes it possible for an
inode to be evicted from the dcache while there are inflight readahead
requests. This causes a deadlock if the server triggers reclaim while
servicing the readahead request and reclaim attempts to evict the inode
of the file being read ahead. Since the folio is locked during
readahead, when reclaim evicts the fuse inode and fuse_evict_inode()
attempts to remove all folios associated with the inode from the page
cache (truncate_inode_pages_range()), reclaim will block forever waiting
for the lock since readahead cannot relinquish the lock because it is
itself blocked in reclaim:
>>> stack_trace(1504735)
folio_wait_bit_common (mm/filemap.c:1308:4)
folio_lock (./include/linux/pagemap.h:1052:3)
truncate_inode_pages_range (mm/truncate.c:336:10)
fuse_evict_inode (fs/fuse/inode.c:161:2)
evict (fs/inode.c:704:3)
dentry_unlink_inode (fs/dcache.c:412:3)
__dentry_kill (fs/dcache.c:615:3)
shrink_kill (fs/dcache.c:1060:12)
shrink_dentry_list (fs/dcache.c:1087:3)
prune_dcache_sb (fs/dcache.c:1168:2)
super_cache_scan (fs/super.c:221:10)
do_shrink_slab (mm/shrinker.c:435:9)
shrink_slab (mm/shrinker.c:626:10)
shrink_node (mm/vmscan.c:5951:2)
shrink_zones (mm/vmscan.c:6195:3)
do_try_to_free_pages (mm/vmscan.c:6257:3)
do_swap_page (mm/memory.c:4136:11)
handle_pte_fault (mm/memory.c:5562:10)
handle_mm_fault (mm/memory.c:5870:9)
do_user_addr_fault (arch/x86/mm/fault.c:1338:10)
handle_page_fault (arch/x86/mm/fault.c:1481:3)
exc_page_fault (arch/x86/mm/fault.c:1539:2)
asm_exc_page_fault+0x22/0x27
Fix this deadlock by allocating ff->release_args and grabbing the
reference on the inode when preparing the file for release even if the
server does not implement open. The inode reference will be dropped when
the last reference on the fuse file is dropped (see fuse_file_put() ->
fuse_release_end()). |
| Insecure permissions in Hubert Imoveis e Administracao Ltda Hub v2.0 1.27.3 allows authenticated attackers with low-level privileges to access other users' information via a crafted API request. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages.
Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour.
This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| openCryptoki is a PKCS#11 library and tools for Linux and AIX. In 3.25.0 and 3.26.0, there is a heap buffer overflow vulnerability in the CKM_ECDH_AES_KEY_WRAP implementation allows an attacker with local access to cause out-of-bounds writes in the host process by supplying a compressed EC public key and invoking C_WrapKey. This can lead to heap corruption, or denial-of-service. |
| Exposure of sensitive information to an unauthorized actor in Windows File Explorer allows an authorized attacker to disclose information locally. |
| Allocation of Resources Without Limits or Throttling (CWE-770) in Kibana Fleet can lead to Excessive Allocation (CAPEC-130) via a specially crafted request. This causes the application to perform redundant processing operations that continuously consume system resources until service degradation or complete unavailability occurs. |
| n8n is an open source workflow automation platform. From 1.36.0 to before 2.2.0, the Webhook node’s IP whitelist validation performed partial string matching instead of exact IP comparison. As a result, an incoming request could be accepted if the source IP address merely contained the configured whitelist entry as a substring. This issue affected instances where workflow editors relied on IP-based access controls to restrict webhook access. Both IPv4 and IPv6 addresses were impacted. An attacker with a non-whitelisted IP could bypass restrictions if their IP shared a partial prefix with a trusted address, undermining the intended security boundary. This vulnerability is fixed in 2.2.0. |
| NSecsoft 'NSecKrnl' is a Windows driver that allows a local, authenticated attacker to terminate processes owned by other users, including SYSTEM and Protected Processes by issuing crafted IOCTL requests to the driver. |
| An authentication bypass vulnerability in the Tongyu AX1800 Wi-Fi 6 Router with firmware 1.0.0 allows unauthenticated network-adjacent attackers to perform arbitrary configuration changes without providing credentials, as long as a valid admin session is active. This can result in full compromise of the device (i.e., via unauthenticated access to /boaform/formSaveConfig and /boaform/admin endpoints). |
| Jervis is a library for Job DSL plugin scripts and shared Jenkins pipeline libraries. Prior to 2.2, Jervis uses padLeft(32, '0') when it should use padLeft(64, '0') because SHA-256 produces 32 bytes which equates to 64 hex characters. This vulnerability is fixed in 2.2. |
| OpenC3 COSMOS provides the functionality needed to send commands to and receive data from one or more embedded systems. From 5.0.0 to 6.10.1, OpenC3 COSMOS contains a critical remote code execution vulnerability reachable through the JSON-RPC API. When a JSON-RPC request uses the string form of certain APIs, attacker-controlled parameter text is parsed into values using String#convert_to_value. For array-like inputs, convert_to_value executes eval(). Because the cmd code path parses the command string before calling authorize(), an unauthenticated attacker can trigger Ruby code execution even though the request ultimately fails authorization (401). This vulnerability is fixed in 6.10.2. |
| Pega Customer Service Framework versions 8.7.0 through 25.1.0 are affected by a Unrestricted file upload vulnerability, where a privileged user could potentially upload a malicious file. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of reference counting to cause a potential use after free.
Improper reference counting on an internal resource caused scenario where potential for use after free was present. |