Search

Search Results (331339 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23025 1 Linux 1 Linux Kernel 2026-02-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: prevent pcp corruption with SMP=n The kernel test robot has reported: BUG: spinlock trylock failure on UP on CPU#0, kcompactd0/28 lock: 0xffff888807e35ef0, .magic: dead4ead, .owner: kcompactd0/28, .owner_cpu: 0 CPU: 0 UID: 0 PID: 28 Comm: kcompactd0 Not tainted 6.18.0-rc5-00127-ga06157804399 #1 PREEMPT 8cc09ef94dcec767faa911515ce9e609c45db470 Call Trace: <IRQ> __dump_stack (lib/dump_stack.c:95) dump_stack_lvl (lib/dump_stack.c:123) dump_stack (lib/dump_stack.c:130) spin_dump (kernel/locking/spinlock_debug.c:71) do_raw_spin_trylock (kernel/locking/spinlock_debug.c:?) _raw_spin_trylock (include/linux/spinlock_api_smp.h:89 kernel/locking/spinlock.c:138) __free_frozen_pages (mm/page_alloc.c:2973) ___free_pages (mm/page_alloc.c:5295) __free_pages (mm/page_alloc.c:5334) tlb_remove_table_rcu (include/linux/mm.h:? include/linux/mm.h:3122 include/asm-generic/tlb.h:220 mm/mmu_gather.c:227 mm/mmu_gather.c:290) ? __cfi_tlb_remove_table_rcu (mm/mmu_gather.c:289) ? rcu_core (kernel/rcu/tree.c:?) rcu_core (include/linux/rcupdate.h:341 kernel/rcu/tree.c:2607 kernel/rcu/tree.c:2861) rcu_core_si (kernel/rcu/tree.c:2879) handle_softirqs (arch/x86/include/asm/jump_label.h:36 include/trace/events/irq.h:142 kernel/softirq.c:623) __irq_exit_rcu (arch/x86/include/asm/jump_label.h:36 kernel/softirq.c:725) irq_exit_rcu (kernel/softirq.c:741) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1052) </IRQ> <TASK> RIP: 0010:_raw_spin_unlock_irqrestore (arch/x86/include/asm/preempt.h:95 include/linux/spinlock_api_smp.h:152 kernel/locking/spinlock.c:194) free_pcppages_bulk (mm/page_alloc.c:1494) drain_pages_zone (include/linux/spinlock.h:391 mm/page_alloc.c:2632) __drain_all_pages (mm/page_alloc.c:2731) drain_all_pages (mm/page_alloc.c:2747) kcompactd (mm/compaction.c:3115) kthread (kernel/kthread.c:465) ? __cfi_kcompactd (mm/compaction.c:3166) ? __cfi_kthread (kernel/kthread.c:412) ret_from_fork (arch/x86/kernel/process.c:164) ? __cfi_kthread (kernel/kthread.c:412) ret_from_fork_asm (arch/x86/entry/entry_64.S:255) </TASK> Matthew has analyzed the report and identified that in drain_page_zone() we are in a section protected by spin_lock(&pcp->lock) and then get an interrupt that attempts spin_trylock() on the same lock. The code is designed to work this way without disabling IRQs and occasionally fail the trylock with a fallback. However, the SMP=n spinlock implementation assumes spin_trylock() will always succeed, and thus it's normally a no-op. Here the enabled lock debugging catches the problem, but otherwise it could cause a corruption of the pcp structure. The problem has been introduced by commit 574907741599 ("mm/page_alloc: leave IRQs enabled for per-cpu page allocations"). The pcp locking scheme recognizes the need for disabling IRQs to prevent nesting spin_trylock() sections on SMP=n, but the need to prevent the nesting in spin_lock() has not been recognized. Fix it by introducing local wrappers that change the spin_lock() to spin_lock_iqsave() with SMP=n and use them in all places that do spin_lock(&pcp->lock). [vbabka@suse.cz: add pcp_ prefix to the spin_lock_irqsave wrappers, per Steven]
CVE-2026-23036 1 Linux 1 Linux Kernel 2026-02-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before iget_failed() in btrfs_read_locked_inode() In btrfs_read_locked_inode() if we fail to lookup the inode, we jump to the 'out' label with a path that has a read locked leaf and then we call iget_failed(). This can result in a ABBA deadlock, since iget_failed() triggers inode eviction and that causes the release of the delayed inode, which must lock the delayed inode's mutex, and a task updating a delayed inode starts by taking the node's mutex and then modifying the inode's subvolume btree. Syzbot reported the following lockdep splat for this: ====================================================== WARNING: possible circular locking dependency detected syzkaller #0 Not tainted ------------------------------------------------------ btrfs-cleaner/8725 is trying to acquire lock: ffff0000d6826a48 (&delayed_node->mutex){+.+.}-{4:4}, at: __btrfs_release_delayed_node+0xa0/0x9b0 fs/btrfs/delayed-inode.c:290 but task is already holding lock: ffff0000dbeba878 (btrfs-tree-00){++++}-{4:4}, at: btrfs_tree_read_lock_nested+0x44/0x2ec fs/btrfs/locking.c:145 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-tree-00){++++}-{4:4}: __lock_release kernel/locking/lockdep.c:5574 [inline] lock_release+0x198/0x39c kernel/locking/lockdep.c:5889 up_read+0x24/0x3c kernel/locking/rwsem.c:1632 btrfs_tree_read_unlock+0xdc/0x298 fs/btrfs/locking.c:169 btrfs_tree_unlock_rw fs/btrfs/locking.h:218 [inline] btrfs_search_slot+0xa6c/0x223c fs/btrfs/ctree.c:2133 btrfs_lookup_inode+0xd8/0x38c fs/btrfs/inode-item.c:395 __btrfs_update_delayed_inode+0x124/0xed0 fs/btrfs/delayed-inode.c:1032 btrfs_update_delayed_inode fs/btrfs/delayed-inode.c:1118 [inline] __btrfs_commit_inode_delayed_items+0x15f8/0x1748 fs/btrfs/delayed-inode.c:1141 __btrfs_run_delayed_items+0x1ac/0x514 fs/btrfs/delayed-inode.c:1176 btrfs_run_delayed_items_nr+0x28/0x38 fs/btrfs/delayed-inode.c:1219 flush_space+0x26c/0xb68 fs/btrfs/space-info.c:828 do_async_reclaim_metadata_space+0x110/0x364 fs/btrfs/space-info.c:1158 btrfs_async_reclaim_metadata_space+0x90/0xd8 fs/btrfs/space-info.c:1226 process_one_work+0x7e8/0x155c kernel/workqueue.c:3263 process_scheduled_works kernel/workqueue.c:3346 [inline] worker_thread+0x958/0xed8 kernel/workqueue.c:3427 kthread+0x5fc/0x75c kernel/kthread.c:463 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:844 -> #0 (&delayed_node->mutex){+.+.}-{4:4}: check_prev_add kernel/locking/lockdep.c:3165 [inline] check_prevs_add kernel/locking/lockdep.c:3284 [inline] validate_chain kernel/locking/lockdep.c:3908 [inline] __lock_acquire+0x1774/0x30a4 kernel/locking/lockdep.c:5237 lock_acquire+0x14c/0x2e0 kernel/locking/lockdep.c:5868 __mutex_lock_common+0x1d0/0x2678 kernel/locking/mutex.c:598 __mutex_lock kernel/locking/mutex.c:760 [inline] mutex_lock_nested+0x2c/0x38 kernel/locking/mutex.c:812 __btrfs_release_delayed_node+0xa0/0x9b0 fs/btrfs/delayed-inode.c:290 btrfs_release_delayed_node fs/btrfs/delayed-inode.c:315 [inline] btrfs_remove_delayed_node+0x68/0x84 fs/btrfs/delayed-inode.c:1326 btrfs_evict_inode+0x578/0xe28 fs/btrfs/inode.c:5587 evict+0x414/0x928 fs/inode.c:810 iput_final fs/inode.c:1914 [inline] iput+0x95c/0xad4 fs/inode.c:1966 iget_failed+0xec/0x134 fs/bad_inode.c:248 btrfs_read_locked_inode+0xe1c/0x1234 fs/btrfs/inode.c:4101 btrfs_iget+0x1b0/0x264 fs/btrfs/inode.c:5837 btrfs_run_defrag_inode fs/btrfs/defrag.c:237 [inline] btrfs_run_defrag_inodes+0x520/0xdc4 fs/btrf ---truncated---
CVE-2025-71185 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: dma-crossbar: fix device leak on am335x route allocation Make sure to drop the reference taken when looking up the crossbar platform device during am335x route allocation.
CVE-2026-23035 1 Linux 1 Linux Kernel 2026-02-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv mlx5e_priv is an unstable structure that can be memset(0) if profile attaching fails. Pass netdev to mlx5e_destroy_netdev() to guarantee it will work on a valid netdev. On mlx5e_remove: Check validity of priv->profile, before attempting to cleanup any resources that might be not there. This fixes a kernel oops in mlx5e_remove when switchdev mode fails due to change profile failure. $ devlink dev eswitch set pci/0000:00:03.0 mode switchdev Error: mlx5_core: Failed setting eswitch to offloads. dmesg: workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12 workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12 mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 $ devlink dev reload pci/0000:00:03.0 ==> oops BUG: kernel NULL pointer dereference, address: 0000000000000370 PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 15 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc5+ #115 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:mlx5e_dcbnl_dscp_app+0x23/0x100 RSP: 0018:ffffc9000083f8b8 EFLAGS: 00010286 RAX: ffff8881126fc380 RBX: ffff8881015ac400 RCX: ffffffff826ffc45 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8881035109c0 RBP: ffff8881035109c0 R08: ffff888101e3e838 R09: ffff888100264e10 R10: ffffc9000083f898 R11: ffffc9000083f8a0 R12: ffff888101b921a0 R13: ffff888101b921a0 R14: ffff8881015ac9a0 R15: ffff8881015ac400 FS: 00007f789a3c8740(0000) GS:ffff88856aa59000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000370 CR3: 000000010b6c0001 CR4: 0000000000370ef0 Call Trace: <TASK> mlx5e_remove+0x57/0x110 device_release_driver_internal+0x19c/0x200 bus_remove_device+0xc6/0x130 device_del+0x160/0x3d0 ? devl_param_driverinit_value_get+0x2d/0x90 mlx5_detach_device+0x89/0xe0 mlx5_unload_one_devl_locked+0x3a/0x70 mlx5_devlink_reload_down+0xc8/0x220 devlink_reload+0x7d/0x260 devlink_nl_reload_doit+0x45b/0x5a0 genl_family_rcv_msg_doit+0xe8/0x140
CVE-2020-37034 1 Helloweb 1 Helloweb 2026-02-03 7.5 High
HelloWeb 2.0 contains an arbitrary file download vulnerability that allows remote attackers to download system files by manipulating filepath and filename parameters. Attackers can send crafted GET requests to download.asp with directory traversal to access sensitive configuration and system files.
CVE-2020-37036 1 Mini-stream 2 Mini-stream Rm Downloader, Rm Downloader 2026-02-03 8.4 High
RM Downloader 2.50.60 contains a local buffer overflow vulnerability in the 'Load' parameter that allows attackers to execute arbitrary code by overwriting memory. Attackers can craft a malicious payload with an egg hunter technique to bypass memory protections and execute commands like launching calc.exe.
CVE-2020-37041 1 Opencti-platform 1 Opencti 2026-02-03 7.5 High
OpenCTI 3.3.1 is vulnerable to a directory traversal attack via the static/css endpoint. An unauthenticated attacker can read arbitrary files from the filesystem by sending crafted GET requests with path traversal sequences (e.g., '../') in the URL. For example, requesting /static/css//../../../../../../../../etc/passwd returns the contents of /etc/passwd. This vulnerability was discovered by Raif Berkay Dincel and confirmed on Linux Mint and Windows 10.
CVE-2025-71184 1 Linux 1 Linux Kernel 2026-02-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix NULL dereference on root when tracing inode eviction When evicting an inode the first thing we do is to setup tracing for it, which implies fetching the root's id. But in btrfs_evict_inode() the root might be NULL, as implied in the next check that we do in btrfs_evict_inode(). Hence, we either should set the ->root_objectid to 0 in case the root is NULL, or we move tracing setup after checking that the root is not NULL. Setting the rootid to 0 at least gives us the possibility to trace this call even in the case when the root is NULL, so that's the solution taken here.
CVE-2025-71187 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: sh: rz-dmac: fix device leak on probe failure Make sure to drop the reference taken when looking up the ICU device during probe also on probe failures (e.g. probe deferral).
CVE-2025-71189 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw: dmamux: fix OF node leak on route allocation failure Make sure to drop the reference taken to the DMA master OF node also on late route allocation failures.
CVE-2025-71191 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: at_hdmac: fix device leak on of_dma_xlate() Make sure to drop the reference taken when looking up the DMA platform device during of_dma_xlate() when releasing channel resources. Note that commit 3832b78b3ec2 ("dmaengine: at_hdmac: add missing put_device() call in at_dma_xlate()") fixed the leak in a couple of error paths but the reference is still leaking on successful allocation.
CVE-2026-23016 1 Linux 1 Linux Kernel 2026-02-03 6.1 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: drop fraglist conntrack references Jakub added a warning in nf_conntrack_cleanup_net_list() to make debugging leaked skbs/conntrack references more obvious. syzbot reports this as triggering, and I can also reproduce this via ip_defrag.sh selftest: conntrack cleanup blocked for 60s WARNING: net/netfilter/nf_conntrack_core.c:2512 [..] conntrack clenups gets stuck because there are skbs with still hold nf_conn references via their frag_list. net.core.skb_defer_max=0 makes the hang disappear. Eric Dumazet points out that skb_release_head_state() doesn't follow the fraglist. ip_defrag.sh can only reproduce this problem since commit 6471658dc66c ("udp: use skb_attempt_defer_free()"), but AFAICS this problem could happen with TCP as well if pmtu discovery is off. The relevant problem path for udp is: 1. netns emits fragmented packets 2. nf_defrag_v6_hook reassembles them (in output hook) 3. reassembled skb is tracked (skb owns nf_conn reference) 4. ip6_output refragments 5. refragmented packets also own nf_conn reference (ip6_fragment calls ip6_copy_metadata()) 6. on input path, nf_defrag_v6_hook skips defragmentation: the fragments already have skb->nf_conn attached 7. skbs are reassembled via ipv6_frag_rcv() 8. skb_consume_udp -> skb_attempt_defer_free() -> skb ends up in pcpu freelist, but still has nf_conn reference. Possible solutions: 1 let defrag engine drop nf_conn entry, OR 2 export kick_defer_list_purge() and call it from the conntrack netns exit callback, OR 3 add skb_has_frag_list() check to skb_attempt_defer_free() 2 & 3 also solve ip_defrag.sh hang but share same drawback: Such reassembled skbs, queued to socket, can prevent conntrack module removal until userspace has consumed the packet. While both tcp and udp stack do call nf_reset_ct() before placing skb on socket queue, that function doesn't iterate frag_list skbs. Therefore drop nf_conn entries when they are placed in defrag queue. Keep the nf_conn entry of the first (offset 0) skb so that reassembled skb retains nf_conn entry for sake of TX path. Note that fixes tag is incorrect; it points to the commit introducing the 'ip_defrag.sh reproducible problem': no need to backport this patch to every stable kernel.
CVE-2026-23028 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_ipi_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
CVE-2026-1165 2 Ays-pro, Wordpress 2 Popup Box, Wordpress 2026-02-03 4.3 Medium
The Popup Box plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 6.1.1. This is due to a flawed nonce implementation in the 'publish_unpublish_popupbox' function that verifies a self-created nonce rather than one submitted in the request. This makes it possible for unauthenticated attackers to change the publish status of popups via a forged request, granted they can trick a site administrator into performing an action such as clicking a link.
CVE-2026-1734 1 Zhongbangkeji 1 Crmeb 2026-02-03 5.3 Medium
A security flaw has been discovered in Zhong Bang CRMEB up to 5.6.3. This vulnerability affects unknown code of the file crmeb/app/api/controller/v1/CrontabController.php of the component crontab Endpoint. The manipulation results in missing authorization. The attack can be launched remotely. The exploit has been released to the public and may be used for attacks. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-23029 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_eiointc_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
CVE-2025-71188 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: lpc18xx-dmamux: fix device leak on route allocation Make sure to drop the reference taken when looking up the DMA mux platform device during route allocation. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2026-23020 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: net: 3com: 3c59x: fix possible null dereference in vortex_probe1() pdev can be null and free_ring: can be called in 1297 with a null pdev.
CVE-2026-23027 1 Linux 1 Linux Kernel 2026-02-03 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy() In kvm_ioctl_create_device(), kvm_device has allocated memory, kvm_device->destroy() seems to be supposed to free its kvm_device struct, but kvm_pch_pic_destroy() is not currently doing this, that would lead to a memory leak. So, fix it.
CVE-2026-23031 1 Linux 1 Linux Kernel 2026-02-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak In gs_can_open(), the URBs for USB-in transfers are allocated, added to the parent->rx_submitted anchor and submitted. In the complete callback gs_usb_receive_bulk_callback(), the URB is processed and resubmitted. In gs_can_close() the URBs are freed by calling usb_kill_anchored_urbs(parent->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in gs_can_close(). Fix the memory leak by anchoring the URB in the gs_usb_receive_bulk_callback() to the parent->rx_submitted anchor.