| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| FontForge SFD File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of SFD files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28547. |
| FontForge PFB File Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PFB files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28546. |
| FontForge SFD File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of SFD files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28544. |
| FontForge SFD File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of SFD files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28543. |
| FontForge SFD File Parsing Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of SFD files. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28198. |
| FontForge GUtils SGI File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of scanlines within SGI files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27920. |
| FontForge GUtils XBM File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of pixels within XBM files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27865. |
| FontForge GUtils BMP File Parsing Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of pixels within BMP files. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27517. |
| FontForge SFD File Parsing Use-After-Free Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of FontForge. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of SFD files. The issue results from the lack of validating the existence of an object prior to performing operations on the object. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-28525. |
| A Stored Cross-Site Scripting (XSS) vulnerability exists in the Meeting location field of the Create/Edit Conference functionality in TrueConf Server v5.5.2.10813. The injected payload is stored via the meeting_room parameter and executed when users visit the Conference Info page, allowing attackers to achieve full Account Takeover (ATO). This issue is caused by improper sanitization of user-supplied input in the meeting_room field. |
| Buffer Overflow vulnerability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavfilter/avf_showspectrum.c:1789:52 component in showspectrumpic_request_frame |
| Buffer Overflow vulnerability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavfilter/f_reverse.c:269:26 in areverse_request_frame. |
| A CSV Formula Injection vulnerability in TrueConf Server v5.5.2.10813 allows a normal user to inject malicious spreadsheet formulas into exported chat logs via crafted Display Name. |
| Buffer Overflow vulnerability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavfilter/avf_showwaves.c:722:24 in showwaves_filter_frame |
| An HTML Injection vulnerability in TrueConf server 5.5.2.10813 in the conference description field allows an attacker to inject arbitrary HTML in the Create/Edit conference functionality. The payload will be triggered when the victim opens the Conference Info page ([conference url]/info). |
| Fluent Bit in_forward input plugin does not properly enforce the security.users authentication mechanism under certain configuration conditions. This allows remote attackers with network access to the Fluent Bit instance exposing the forward input to send unauthenticated data. By bypassing authentication controls, attackers can inject forged log records, flood alerting systems, or manipulate routing decisions, compromising the authenticity and integrity of ingested logs. |
| Fluent Bit in_http, in_splunk, and in_elasticsearch input plugins contain a flaw in the tag_key validation logic that fails to enforce exact key-length matching. This allows crafted inputs where a tag prefix is incorrectly treated as a full match. A remote attacker with authenticated or exposed access to these input endpoints can exploit this behavior to manipulate tags and redirect records to unintended destinations. This compromises the authenticity of ingested logs and can allow injection of forged data, alert flooding and routing manipulation. |
| The extract_name function in Fluent Bit in_docker input plugin copies container names into a fixed size stack buffer without validating length. An attacker who can create containers or control container names, can supply a long name that overflows the buffer, leading to process crash or arbitrary code execution. |
| Fluent Bit out_file plugin does not properly sanitize tag values when deriving output file names. When the File option is omitted, the plugin uses untrusted tag input to construct file paths. This allows attackers with network access to craft tags containing path traversal sequences that cause Fluent Bit to write files outside the intended output directory. |
| Fluent Bit in_http, in_splunk, and in_elasticsearch input plugins fail to sanitize tag_key inputs. An attacker with network access or the ability to write records into Splunk or Elasticsearch can supply tag_key values containing special characters such as newlines or ../ that are treated as valid tags. Because tags influence routing and some outputs derive filenames or contents from tags, this can allow newline injection, path traversal, forged record injection, or log misrouting, impacting data integrity and log routing. |