| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Convert spinlock to mutex to lock evl workqueue
drain_workqueue() cannot be called safely in a spinlocked context due to
possible task rescheduling. In the multi-task scenario, calling
queue_work() while drain_workqueue() will lead to a Call Trace as
pushing a work on a draining workqueue is not permitted in spinlocked
context.
Call Trace:
<TASK>
? __warn+0x7d/0x140
? __queue_work+0x2b2/0x440
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x2b2/0x440
queue_work_on+0x28/0x30
idxd_misc_thread+0x303/0x5a0 [idxd]
? __schedule+0x369/0xb40
? __pfx_irq_thread_fn+0x10/0x10
? irq_thread+0xbc/0x1b0
irq_thread_fn+0x21/0x70
irq_thread+0x102/0x1b0
? preempt_count_add+0x74/0xa0
? __pfx_irq_thread_dtor+0x10/0x10
? __pfx_irq_thread+0x10/0x10
kthread+0x103/0x140
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The current implementation uses a spinlock to protect event log workqueue
and will lead to the Call Trace due to potential task rescheduling.
To address the locking issue, convert the spinlock to mutex, allowing
the drain_workqueue() to be called in a safe mutex-locked context.
This change ensures proper synchronization when accessing the event log
workqueue, preventing potential Call Trace and improving the overall
robustness of the code. |
| Authorization Bypass Through User-Controlled Key vulnerability in Anadolu Hayat Emeklilik Inc. AHE Mobile allows Privilege Abuse.This issue affects AHE Mobile: from 1.9.7 before 1.9.9. |
| The Vitogate 300 web interface fails to enforce proper server-side authentication and relies on frontend-based authentication controls. This allows an attacker to simply modify HTML elements in the browser’s developer tools to bypass login restrictions. By removing specific UI elements, an attacker can reveal the hidden administration menu, giving them full control over the device. |
| TrueFiling is a collaborative, web-based electronic filing system where attorneys, paralegals, court reporters and self-represented filers collect public legal documentation into cases. TrueFiling is an entirely cloud-hosted application. Prior to version 3.1.112.19, TrueFiling trusted some client-controlled identifiers passed in URL requests to retrieve information. Platform users must self-register for an account, and once authenticated, could manipulate those identifiers to gain partial access to case information and the ability to partially change user access to case information. This vulnerability was addressed in version 3.1.112.19 and all instances were updated by 2024-11-08. |
| Mattermost Mobile Apps versions <=2.25.0 fail to terminate sessions during logout under certain conditions (e.g. poor connectivity), allowing unauthorized users on shared devices to access sensitive notification content via continued mobile notifications |
| Dell SupportAssist OS Recovery versions prior to 5.5.13.1 contain a symbolic link attack vulnerability. A low-privileged attacker with local access could potentially exploit this vulnerability, leading to arbitrary file deletion and Elevation of Privileges. |
| Daikin Europe N.V
Security Gateway is vulnerable to an authorization bypass through
a user-controlled key vulnerability that could allow an attacker to
bypass authentication. An unauthorized attacker could access the system
without prior credentials. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Avoid crash from unnecessary IDA free
In the remove path, there is an attempt to free the aux_idx IDA whether
it was allocated or not. This can potentially cause a crash when
unloading the driver on systems that do not initialize support for RDMA.
But, this free cannot be gated by the status bit for RDMA, since it is
allocated if the driver detects support for RDMA at probe time, but the
driver can enter into a state where RDMA is not supported after the IDA
has been allocated at probe time and this would lead to a memory leak.
Initialize aux_idx to an invalid value and check for a valid value when
unloading to determine if an IDA free is necessary. |
| A vulnerability has been identified in Teamcenter V14.1 (All versions), Teamcenter V14.2 (All versions), Teamcenter V14.3 (All versions < V14.3.0.14), Teamcenter V2312 (All versions < V2312.0010), Teamcenter V2406 (All versions < V2406.0008), Teamcenter V2412 (All versions < V2412.0004). The SSO login service of affected applications accepts user-controlled input that could specify a link to an external site. This could allow an attacker to redirect the legitimate user to an attacker-chosen URL to steal valid session data. For a successful exploit, the legitimate user must actively click on an attacker-crafted link. |
| VisiCut 2.1 allows stack consumption via an XML document with nested set elements, as demonstrated by a java.util.HashMap StackOverflowError when reference='../../../set/set[2]' is used, aka an "insecure deserialization" issue. |
| In the Linux kernel, the following vulnerability has been resolved:
cpu/hotplug: Don't offline the last non-isolated CPU
If a system has isolated CPUs via the "isolcpus=" command line parameter,
then an attempt to offline the last housekeeping CPU will result in a
WARN_ON() when rebuilding the scheduler domains and a subsequent panic due
to and unhandled empty CPU mas in partition_sched_domains_locked().
cpuset_hotplug_workfn()
rebuild_sched_domains_locked()
ndoms = generate_sched_domains(&doms, &attr);
cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN));
Thus results in an empty CPU mask which triggers the warning and then the
subsequent crash:
WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408
Call trace:
build_sched_domains+0x120c/0x1408
partition_sched_domains_locked+0x234/0x880
rebuild_sched_domains_locked+0x37c/0x798
rebuild_sched_domains+0x30/0x58
cpuset_hotplug_workfn+0x2a8/0x930
Unable to handle kernel paging request at virtual address fffe80027ab37080
partition_sched_domains_locked+0x318/0x880
rebuild_sched_domains_locked+0x37c/0x798
Aside of the resulting crash, it does not make any sense to offline the last
last housekeeping CPU.
Prevent this by masking out the non-housekeeping CPUs when selecting a
target CPU for initiating the CPU unplug operation via the work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add validity check for db_maxag and db_agpref
Both db_maxag and db_agpref are used as the index of the
db_agfree array, but there is currently no validity check for
db_maxag and db_agpref, which can lead to errors.
The following is related bug reported by Syzbot:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:639:20
index 7936 is out of range for type 'atomic_t[128]'
Add checking that the values of db_maxag and db_agpref are valid
indexes for the db_agfree array. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix freeing of uninitialized misc IRQ vector
When VSI set up failed in i40e_probe() as part of PF switch set up
driver was trying to free misc IRQ vectors in
i40e_clear_interrupt_scheme and produced a kernel Oops:
Trying to free already-free IRQ 266
WARNING: CPU: 0 PID: 5 at kernel/irq/manage.c:1731 __free_irq+0x9a/0x300
Workqueue: events work_for_cpu_fn
RIP: 0010:__free_irq+0x9a/0x300
Call Trace:
? synchronize_irq+0x3a/0xa0
free_irq+0x2e/0x60
i40e_clear_interrupt_scheme+0x53/0x190 [i40e]
i40e_probe.part.108+0x134b/0x1a40 [i40e]
? kmem_cache_alloc+0x158/0x1c0
? acpi_ut_update_ref_count.part.1+0x8e/0x345
? acpi_ut_update_object_reference+0x15e/0x1e2
? strstr+0x21/0x70
? irq_get_irq_data+0xa/0x20
? mp_check_pin_attr+0x13/0xc0
? irq_get_irq_data+0xa/0x20
? mp_map_pin_to_irq+0xd3/0x2f0
? acpi_register_gsi_ioapic+0x93/0x170
? pci_conf1_read+0xa4/0x100
? pci_bus_read_config_word+0x49/0x70
? do_pci_enable_device+0xcc/0x100
local_pci_probe+0x41/0x90
work_for_cpu_fn+0x16/0x20
process_one_work+0x1a7/0x360
worker_thread+0x1cf/0x390
? create_worker+0x1a0/0x1a0
kthread+0x112/0x130
? kthread_flush_work_fn+0x10/0x10
ret_from_fork+0x1f/0x40
The problem is that at that point misc IRQ vectors
were not allocated yet and we get a call trace
that driver is trying to free already free IRQ vectors.
Add a check in i40e_clear_interrupt_scheme for __I40E_MISC_IRQ_REQUESTED
PF state before calling i40e_free_misc_vector. This state is set only if
misc IRQ vectors were properly initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc: combine all TLB flush operations of KASAN shadow virtual address into one operation
When compiling kernel source 'make -j $(nproc)' with the up-and-running
KASAN-enabled kernel on a 256-core machine, the following soft lockup is
shown:
watchdog: BUG: soft lockup - CPU#28 stuck for 22s! [kworker/28:1:1760]
CPU: 28 PID: 1760 Comm: kworker/28:1 Kdump: loaded Not tainted 6.10.0-rc5 #95
Workqueue: events drain_vmap_area_work
RIP: 0010:smp_call_function_many_cond+0x1d8/0xbb0
Code: 38 c8 7c 08 84 c9 0f 85 49 08 00 00 8b 45 08 a8 01 74 2e 48 89 f1 49 89 f7 48 c1 e9 03 41 83 e7 07 4c 01 e9 41 83 c7 03 f3 90 <0f> b6 01 41 38 c7 7c 08 84 c0 0f 85 d4 06 00 00 8b 45 08 a8 01 75
RSP: 0018:ffffc9000cb3fb60 EFLAGS: 00000202
RAX: 0000000000000011 RBX: ffff8883bc4469c0 RCX: ffffed10776e9949
RDX: 0000000000000002 RSI: ffff8883bb74ca48 RDI: ffffffff8434dc50
RBP: ffff8883bb74ca40 R08: ffff888103585dc0 R09: ffff8884533a1800
R10: 0000000000000004 R11: ffffffffffffffff R12: ffffed1077888d39
R13: dffffc0000000000 R14: ffffed1077888d38 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff8883bc400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005577b5c8d158 CR3: 0000000004850000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
? watchdog_timer_fn+0x2cd/0x390
? __pfx_watchdog_timer_fn+0x10/0x10
? __hrtimer_run_queues+0x300/0x6d0
? sched_clock_cpu+0x69/0x4e0
? __pfx___hrtimer_run_queues+0x10/0x10
? srso_return_thunk+0x5/0x5f
? ktime_get_update_offsets_now+0x7f/0x2a0
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
? hrtimer_interrupt+0x2ca/0x760
? __sysvec_apic_timer_interrupt+0x8c/0x2b0
? sysvec_apic_timer_interrupt+0x6a/0x90
</IRQ>
<TASK>
? asm_sysvec_apic_timer_interrupt+0x16/0x20
? smp_call_function_many_cond+0x1d8/0xbb0
? __pfx_do_kernel_range_flush+0x10/0x10
on_each_cpu_cond_mask+0x20/0x40
flush_tlb_kernel_range+0x19b/0x250
? srso_return_thunk+0x5/0x5f
? kasan_release_vmalloc+0xa7/0xc0
purge_vmap_node+0x357/0x820
? __pfx_purge_vmap_node+0x10/0x10
__purge_vmap_area_lazy+0x5b8/0xa10
drain_vmap_area_work+0x21/0x30
process_one_work+0x661/0x10b0
worker_thread+0x844/0x10e0
? srso_return_thunk+0x5/0x5f
? __kthread_parkme+0x82/0x140
? __pfx_worker_thread+0x10/0x10
kthread+0x2a5/0x370
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Debugging Analysis:
1. The following ftrace log shows that the lockup CPU spends too much
time iterating vmap_nodes and flushing TLB when purging vm_area
structures. (Some info is trimmed).
kworker: funcgraph_entry: | drain_vmap_area_work() {
kworker: funcgraph_entry: | mutex_lock() {
kworker: funcgraph_entry: 1.092 us | __cond_resched();
kworker: funcgraph_exit: 3.306 us | }
... ...
kworker: funcgraph_entry: | flush_tlb_kernel_range() {
... ...
kworker: funcgraph_exit: # 7533.649 us | }
... ...
kworker: funcgraph_entry: 2.344 us | mutex_unlock();
kworker: funcgraph_exit: $ 23871554 us | }
The drain_vmap_area_work() spends over 23 seconds.
There are 2805 flush_tlb_kernel_range() calls in the ftrace log.
* One is called in __purge_vmap_area_lazy().
* Others are called by purge_vmap_node->kasan_release_vmalloc.
purge_vmap_node() iteratively releases kasan vmalloc
allocations and flushes TLB for each vmap_area.
- [Rough calculation] Each flush_tlb_kernel_range() runs
about 7.5ms.
-- 2804 * 7.5ms = 21.03 seconds.
-- That's why a soft lock is triggered.
2. Extending the soft lockup time can work around the issue (For example,
# echo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: protect device queue against concurrent access
In dasd_profile_start() the amount of requests on the device queue are
counted. The access to the device queue is unprotected against
concurrent access. With a lot of parallel I/O, especially with alias
devices enabled, the device queue can change while dasd_profile_start()
is accessing the queue. In the worst case this leads to a kernel panic
due to incorrect pointer accesses.
Fix this by taking the device lock before accessing the queue and
counting the requests. Additionally the check for a valid profile data
pointer can be done earlier to avoid unnecessary locking in a hot path. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: VMAP_STACK overflow detection thread-safe
commit 31da94c25aea ("riscv: add VMAP_STACK overflow detection") added
support for CONFIG_VMAP_STACK. If overflow is detected, CPU switches to
`shadow_stack` temporarily before switching finally to per-cpu
`overflow_stack`.
If two CPUs/harts are racing and end up in over flowing kernel stack, one
or both will end up corrupting each other state because `shadow_stack` is
not per-cpu. This patch optimizes per-cpu overflow stack switch by
directly picking per-cpu `overflow_stack` and gets rid of `shadow_stack`.
Following are the changes in this patch
- Defines an asm macro to obtain per-cpu symbols in destination
register.
- In entry.S, when overflow is detected, per-cpu overflow stack is
located using per-cpu asm macro. Computing per-cpu symbol requires
a temporary register. x31 is saved away into CSR_SCRATCH
(CSR_SCRATCH is anyways zero since we're in kernel).
Please see Links for additional relevant disccussion and alternative
solution.
Tested by `echo EXHAUST_STACK > /sys/kernel/debug/provoke-crash/DIRECT`
Kernel crash log below
Insufficient stack space to handle exception!/debug/provoke-crash/DIRECT
Task stack: [0xff20000010a98000..0xff20000010a9c000]
Overflow stack: [0xff600001f7d98370..0xff600001f7d99370]
CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34
Hardware name: riscv-virtio,qemu (DT)
epc : __memset+0x60/0xfc
ra : recursive_loop+0x48/0xc6 [lkdtm]
epc : ffffffff808de0e4 ra : ffffffff0163a752 sp : ff20000010a97e80
gp : ffffffff815c0330 tp : ff600000820ea280 t0 : ff20000010a97e88
t1 : 000000000000002e t2 : 3233206874706564 s0 : ff20000010a982b0
s1 : 0000000000000012 a0 : ff20000010a97e88 a1 : 0000000000000000
a2 : 0000000000000400 a3 : ff20000010a98288 a4 : 0000000000000000
a5 : 0000000000000000 a6 : fffffffffffe43f0 a7 : 00007fffffffffff
s2 : ff20000010a97e88 s3 : ffffffff01644680 s4 : ff20000010a9be90
s5 : ff600000842ba6c0 s6 : 00aaaaaac29e42b0 s7 : 00fffffff0aa3684
s8 : 00aaaaaac2978040 s9 : 0000000000000065 s10: 00ffffff8a7cad10
s11: 00ffffff8a76a4e0 t3 : ffffffff815dbaf4 t4 : ffffffff815dbaf4
t5 : ffffffff815dbab8 t6 : ff20000010a9bb48
status: 0000000200000120 badaddr: ff20000010a97e88 cause: 000000000000000f
Kernel panic - not syncing: Kernel stack overflow
CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
[<ffffffff80006754>] dump_backtrace+0x30/0x38
[<ffffffff808de798>] show_stack+0x40/0x4c
[<ffffffff808ea2a8>] dump_stack_lvl+0x44/0x5c
[<ffffffff808ea2d8>] dump_stack+0x18/0x20
[<ffffffff808dec06>] panic+0x126/0x2fe
[<ffffffff800065ea>] walk_stackframe+0x0/0xf0
[<ffffffff0163a752>] recursive_loop+0x48/0xc6 [lkdtm]
SMP: stopping secondary CPUs
---[ end Kernel panic - not syncing: Kernel stack overflow ]--- |
| Meshtastic is an open source mesh networking solution. In affected firmware versions crafted packets over MQTT are able to appear as a DM in client to a node even though they were not decoded with PKC. This issue has been addressed in version 2.5.19 and all users are advised to upgrade. There are no known workarounds for this vulnerability. |
| Connect2id Nimbus JOSE + JWT 10.0.x before 10.0.2 and 9.37.x before 9.37.4 allows a remote attacker to cause a denial of service via a deeply nested JSON object supplied in a JWT claim set, because of uncontrolled recursion. NOTE: this is independent of the Gson 2.11.0 issue because the Connect2id product could have checked the JSON object nesting depth, regardless of what limits (if any) were imposed by Gson. |
| Tyler Technologies ERP Pro 9 SaaS allows an authenticated user to escape the application and execute limited operating system commands within the remote Microsoft Windows environment with the privileges of the authenticated user. Tyler Technologies deployed hardened remote Windows environment settings to all ERP Pro 9 SaaS customer environments as of 2025-08-01. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix missing hugetlb_lock for resv uncharge
There is a recent report on UFFDIO_COPY over hugetlb:
https://lore.kernel.org/all/000000000000ee06de0616177560@google.com/
350: lockdep_assert_held(&hugetlb_lock);
Should be an issue in hugetlb but triggered in an userfault context, where
it goes into the unlikely path where two threads modifying the resv map
together. Mike has a fix in that path for resv uncharge but it looks like
the locking criteria was overlooked: hugetlb_cgroup_uncharge_folio_rsvd()
will update the cgroup pointer, so it requires to be called with the lock
held. |