Search

Search Results (326086 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-58315 2026-01-02 8.4 High
Tosibox Key Service 3.3.0 contains an unquoted service path vulnerability that allows local non-privileged users to potentially execute code with elevated system privileges. Attackers can exploit the service startup process by inserting malicious code in the system root path, enabling unauthorized code execution during application startup or system reboot.
CVE-2023-54327 2026-01-02 7.5 High
Tinycontrol LAN Controller 1.58a contains an authentication bypass vulnerability that allows unauthenticated attackers to change admin passwords through a crafted API request. Attackers can exploit the /stm.cgi endpoint with a specially crafted authentication parameter to disable access controls and modify administrative credentials.
CVE-2023-54163 2026-01-02 8.2 High
NLB mKlik Macedonia 3.3.12 contains a SQL injection vulnerability in international transfer parameters that allows attackers to manipulate database queries. Attackers can inject arbitrary SQL code through unsanitized input to potentially disclose sensitive information from the mobile banking application.
CVE-2023-53983 2026-01-02 7.5 High
Anevia Flamingo XL/XS 3.6.20 contains a critical vulnerability with weak default administrative credentials that can be easily guessed. Attackers can leverage these hard-coded credentials to gain full remote system control without complex authentication mechanisms.
CVE-2022-50883 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent decl_tag from being referenced in func_proto arg Syzkaller managed to hit another decl_tag issue: btf_func_proto_check kernel/bpf/btf.c:4506 [inline] btf_check_all_types kernel/bpf/btf.c:4734 [inline] btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763 btf_parse kernel/bpf/btf.c:5042 [inline] btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709 bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342 __sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034 __do_sys_bpf kernel/bpf/syscall.c:5093 [inline] __se_sys_bpf kernel/bpf/syscall.c:5091 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091 do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48 This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being referenced in func_proto") but for the argument.
CVE-2022-50844 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix type of second parameter in odn_edit_dpm_table() callback With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/gpu/drm/amd/amdgpu/../pm/swsmu/amdgpu_smu.c:3008:29: error: incompatible function pointer types initializing 'int (*)(void *, uint32_t, long *, uint32_t)' (aka 'int (*)(void *, unsigned int, long *, unsigned int)') with an expression of type 'int (void *, enum PP_OD_DPM_TABLE_COMMAND, long *, uint32_t)' (aka 'int (void *, enum PP_OD_DPM_TABLE_COMMAND, long *, unsigned int)') [-Werror,-Wincompatible-function-pointer-types-strict] .odn_edit_dpm_table = smu_od_edit_dpm_table, ^~~~~~~~~~~~~~~~~~~~~ 1 error generated. There are only two implementations of ->odn_edit_dpm_table() in 'struct amd_pm_funcs': smu_od_edit_dpm_table() and pp_odn_edit_dpm_table(). One has a second parameter type of 'enum PP_OD_DPM_TABLE_COMMAND' and the other uses 'u32'. Ultimately, smu_od_edit_dpm_table() calls ->od_edit_dpm_table() from 'struct pptable_funcs' and pp_odn_edit_dpm_table() calls ->odn_edit_dpm_table() from 'struct pp_hwmgr_func', which both have a second parameter type of 'enum PP_OD_DPM_TABLE_COMMAND'. Update the type parameter in both the prototype in 'struct amd_pm_funcs' and pp_odn_edit_dpm_table() to 'enum PP_OD_DPM_TABLE_COMMAND', which cleans up the warning.
CVE-2022-50804 2026-01-02 6.5 Medium
JM-DATA ONU JF511-TV version 1.0.67 is vulnerable to cross-site request forgery (CSRF) attacks, allowing attackers to perform administrative actions on behalf of authenticated users without their knowledge or consent.
CVE-2022-50802 2026-01-02 6.1 Medium
ETAP Safety Manager 1.0.0.32 contains a cross-site scripting vulnerability in the 'action' GET parameter that allows unauthenticated attackers to inject malicious HTML and JavaScript. Attackers can craft specially formed requests to execute arbitrary scripts in victim browser sessions, potentially stealing credentials or performing unauthorized actions.
CVE-2022-50691 2026-01-02 9.8 Critical
MiniDVBLinux 5.4 contains a remote command execution vulnerability that allows unauthenticated attackers to execute arbitrary commands as root through the 'command' GET parameter. Attackers can exploit the /tpl/commands.sh endpoint by sending malicious command values to gain root-level system access.
CVE-2025-52691 1 Smartertools 1 Smartermail 2026-01-02 10 Critical
Successful exploitation of the vulnerability could allow an unauthenticated attacker to upload arbitrary files to any location on the mail server, potentially enabling remote code execution.
CVE-2022-50884 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: Prevent drm_copy_field() to attempt copying a NULL pointer There are some struct drm_driver fields that are required by drivers since drm_copy_field() attempts to copy them to user-space via DRM_IOCTL_VERSION. But it can be possible that a driver has a bug and did not set some of the fields, which leads to drm_copy_field() attempting to copy a NULL pointer: [ +10.395966] Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000 [ +0.010955] Mem abort info: [ +0.002835] ESR = 0x0000000096000004 [ +0.003872] EC = 0x25: DABT (current EL), IL = 32 bits [ +0.005395] SET = 0, FnV = 0 [ +0.003113] EA = 0, S1PTW = 0 [ +0.003182] FSC = 0x04: level 0 translation fault [ +0.004964] Data abort info: [ +0.002919] ISV = 0, ISS = 0x00000004 [ +0.003886] CM = 0, WnR = 0 [ +0.003040] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000115dad000 [ +0.006536] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ +0.006925] Internal error: Oops: 96000004 [#1] SMP ... [ +0.011113] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ +0.007061] pc : __pi_strlen+0x14/0x150 [ +0.003895] lr : drm_copy_field+0x30/0x1a4 [ +0.004156] sp : ffff8000094b3a50 [ +0.003355] x29: ffff8000094b3a50 x28: ffff8000094b3b70 x27: 0000000000000040 [ +0.007242] x26: ffff443743c2ba00 x25: 0000000000000000 x24: 0000000000000040 [ +0.007243] x23: ffff443743c2ba00 x22: ffff8000094b3b70 x21: 0000000000000000 [ +0.007241] x20: 0000000000000000 x19: ffff8000094b3b90 x18: 0000000000000000 [ +0.007241] x17: 0000000000000000 x16: 0000000000000000 x15: 0000aaab14b9af40 [ +0.007241] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ +0.007239] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffa524ad67d4d8 [ +0.007242] x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : 6c6e6263606e7141 [ +0.007239] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 [ +0.007241] x2 : 0000000000000000 x1 : ffff8000094b3b90 x0 : 0000000000000000 [ +0.007240] Call trace: [ +0.002475] __pi_strlen+0x14/0x150 [ +0.003537] drm_version+0x84/0xac [ +0.003448] drm_ioctl_kernel+0xa8/0x16c [ +0.003975] drm_ioctl+0x270/0x580 [ +0.003448] __arm64_sys_ioctl+0xb8/0xfc [ +0.003978] invoke_syscall+0x78/0x100 [ +0.003799] el0_svc_common.constprop.0+0x4c/0xf4 [ +0.004767] do_el0_svc+0x38/0x4c [ +0.003357] el0_svc+0x34/0x100 [ +0.003185] el0t_64_sync_handler+0x11c/0x150 [ +0.004418] el0t_64_sync+0x190/0x194 [ +0.003716] Code: 92402c04 b200c3e8 f13fc09f 5400088c (a9400c02) [ +0.006180] ---[ end trace 0000000000000000 ]---
CVE-2022-50881 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: Fix use-after-free in ath9k_hif_usb_disconnect() This patch fixes a use-after-free in ath9k that occurs in ath9k_hif_usb_disconnect() when ath9k_destroy_wmi() is trying to access 'drv_priv' that has already been freed by ieee80211_free_hw(), called by ath9k_htc_hw_deinit(). The patch moves ath9k_destroy_wmi() before ieee80211_free_hw(). Note that urbs from the driver should be killed before freeing 'wmi' with ath9k_destroy_wmi() as their callbacks will access 'wmi'. Found by a modified version of syzkaller. ================================================================== BUG: KASAN: use-after-free in ath9k_destroy_wmi+0x38/0x40 Read of size 8 at addr ffff8881069132a0 by task kworker/0:1/7 CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #131 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x8e/0xd1 print_address_description.constprop.0.cold+0x93/0x334 ? ath9k_destroy_wmi+0x38/0x40 ? ath9k_destroy_wmi+0x38/0x40 kasan_report.cold+0x83/0xdf ? ath9k_destroy_wmi+0x38/0x40 ath9k_destroy_wmi+0x38/0x40 ath9k_hif_usb_disconnect+0x329/0x3f0 ? ath9k_hif_usb_suspend+0x120/0x120 ? usb_disable_interface+0xfc/0x180 usb_unbind_interface+0x19b/0x7e0 ? usb_autoresume_device+0x50/0x50 device_release_driver_internal+0x44d/0x520 bus_remove_device+0x2e5/0x5a0 device_del+0x5b2/0xe30 ? __device_link_del+0x370/0x370 ? usb_remove_ep_devs+0x43/0x80 ? remove_intf_ep_devs+0x112/0x1a0 usb_disable_device+0x1e3/0x5a0 usb_disconnect+0x267/0x870 hub_event+0x168d/0x3950 ? rcu_read_lock_sched_held+0xa1/0xd0 ? hub_port_debounce+0x2e0/0x2e0 ? check_irq_usage+0x860/0xf20 ? drain_workqueue+0x281/0x360 ? lock_release+0x640/0x640 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x92b/0x1460 ? pwq_dec_nr_in_flight+0x330/0x330 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x95/0xe00 ? __kthread_parkme+0x115/0x1e0 ? process_one_work+0x1460/0x1460 kthread+0x3a1/0x480 ? set_kthread_struct+0x120/0x120 ret_from_fork+0x1f/0x30 The buggy address belongs to the page: page:ffffea00041a44c0 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106913 flags: 0x200000000000000(node=0|zone=2) raw: 0200000000000000 0000000000000000 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as freed page last allocated via order 3, migratetype Unmovable, gfp_mask 0x40dc0(GFP_KERNEL|__GFP_COMP|__GFP_ZERO), pid 7, ts 38347963444, free_ts 41399957635 prep_new_page+0x1aa/0x240 get_page_from_freelist+0x159a/0x27c0 __alloc_pages+0x2da/0x6a0 alloc_pages+0xec/0x1e0 kmalloc_order+0x39/0xf0 kmalloc_order_trace+0x19/0x120 __kmalloc+0x308/0x390 wiphy_new_nm+0x6f5/0x1dd0 ieee80211_alloc_hw_nm+0x36d/0x2230 ath9k_htc_probe_device+0x9d/0x1e10 ath9k_htc_hw_init+0x34/0x50 ath9k_hif_usb_firmware_cb+0x25f/0x4e0 request_firmware_work_func+0x131/0x240 process_one_work+0x92b/0x1460 worker_thread+0x95/0xe00 kthread+0x3a1/0x480 page last free stack trace: free_pcp_prepare+0x3d3/0x7f0 free_unref_page+0x1e/0x3d0 device_release+0xa4/0x240 kobject_put+0x186/0x4c0 put_device+0x20/0x30 ath9k_htc_disconnect_device+0x1cf/0x2c0 ath9k_htc_hw_deinit+0x26/0x30 ath9k_hif_usb_disconnect+0x2d9/0x3f0 usb_unbind_interface+0x19b/0x7e0 device_release_driver_internal+0x44d/0x520 bus_remove_device+0x2e5/0x5a0 device_del+0x5b2/0xe30 usb_disable_device+0x1e3/0x5a0 usb_disconnect+0x267/0x870 hub_event+0x168d/0x3950 process_one_work+0x92b/0x1460 Memory state around the buggy address: ffff888106913180: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff888106913200: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff888 ---truncated---
CVE-2022-50879 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: objtool: Fix SEGFAULT find_insn() will return NULL in case of failure. Check insn in order to avoid a kernel Oops for NULL pointer dereference.
CVE-2022-50878 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpu: lontium-lt9611: Fix NULL pointer dereference in lt9611_connector_init() A NULL check for bridge->encoder shows that it may be NULL, but it already been dereferenced on all paths leading to the check. 812 if (!bridge->encoder) { Dereference the pointer bridge->encoder. 810 drm_connector_attach_encoder(&lt9611->connector, bridge->encoder);
CVE-2022-50876 1 Linux 1 Linux Kernel 2026-01-02 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: musb: Fix musb_gadget.c rxstate overflow bug The usb function device call musb_gadget_queue() adds the passed request to musb_ep::req_list,If the (request->length > musb_ep->packet_sz) and (is_buffer_mapped(req) return false),the rxstate() will copy all data in fifo to request->buf which may cause request->buf out of bounds. Fix it by add the length check : fifocnt = min_t(unsigned, request->length - request->actual, fifocnt);
CVE-2022-50871 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Fix qmi_msg_handler data structure initialization qmi_msg_handler is required to be null terminated by QMI module. There might be a case where a handler for a msg id is not present in the handlers array which can lead to infinite loop while searching the handler and therefore out of bound access in qmi_invoke_handler(). Hence update the initialization in qmi_msg_handler data structure. Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.5.0.1-01100-QCAHKSWPL_SILICONZ-1
CVE-2022-50870 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: avoid device tree lookups in rtas_os_term() rtas_os_term() is called during panic. Its behavior depends on a couple of conditions in the /rtas node of the device tree, the traversal of which entails locking and local IRQ state changes. If the kernel panics while devtree_lock is held, rtas_os_term() as currently written could hang. Instead of discovering the relevant characteristics at panic time, cache them in file-static variables at boot. Note the lookup for "ibm,extended-os-term" is converted to of_property_read_bool() since it is a boolean property, not an RTAS function token. [mpe: Incorporate suggested change from Nick]
CVE-2022-50869 1 Linux 1 Linux Kernel 2026-01-02 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix slab-out-of-bounds in r_page When PAGE_SIZE is 64K, if read_log_page is called by log_read_rst for the first time, the size of *buffer would be equal to DefaultLogPageSize(4K).But for *buffer operations like memcpy, if the memory area size(n) which being assigned to buffer is larger than 4K (log->page_size(64K) or bytes(64K-page_off)), it will cause an out of boundary error. Call trace: [...] kasan_report+0x44/0x130 check_memory_region+0xf8/0x1a0 memcpy+0xc8/0x100 ntfs_read_run_nb+0x20c/0x460 read_log_page+0xd0/0x1f4 log_read_rst+0x110/0x75c log_replay+0x1e8/0x4aa0 ntfs_loadlog_and_replay+0x290/0x2d0 ntfs_fill_super+0x508/0xec0 get_tree_bdev+0x1fc/0x34c [...] Fix this by setting variable r_page to NULL in log_read_rst.
CVE-2022-50864 1 Linux 1 Linux Kernel 2026-01-02 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix shift-out-of-bounds due to too large exponent of block size If field s_log_block_size of superblock data is corrupted and too large, init_nilfs() and load_nilfs() still can trigger a shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn is set): shift exponent 38973 is too large for 32-bit type 'int' Call Trace: <TASK> dump_stack_lvl+0xcd/0x134 ubsan_epilogue+0xb/0x50 __ubsan_handle_shift_out_of_bounds.cold.12+0x17b/0x1f5 init_nilfs.cold.11+0x18/0x1d [nilfs2] nilfs_mount+0x9b5/0x12b0 [nilfs2] ... This fixes the issue by adding and using a new helper function for getting block size with sanity check.
CVE-2022-50863 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: free unused skb to prevent memory leak This avoid potential memory leak under power saving mode.