| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
speakup: Fix sizeof() vs ARRAY_SIZE() bug
The "buf" pointer is an array of u16 values. This code should be
using ARRAY_SIZE() (which is 256) instead of sizeof() (which is 512),
otherwise it can the still got out of bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix use-after-free of timer for log writer thread
Patch series "nilfs2: fix log writer related issues".
This bug fix series covers three nilfs2 log writer-related issues,
including a timer use-after-free issue and potential deadlock issue on
unmount, and a potential freeze issue in event synchronization found
during their analysis. Details are described in each commit log.
This patch (of 3):
A use-after-free issue has been reported regarding the timer sc_timer on
the nilfs_sc_info structure.
The problem is that even though it is used to wake up a sleeping log
writer thread, sc_timer is not shut down until the nilfs_sc_info structure
is about to be freed, and is used regardless of the thread's lifetime.
Fix this issue by limiting the use of sc_timer only while the log writer
thread is alive. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential hang in nilfs_detach_log_writer()
Syzbot has reported a potential hang in nilfs_detach_log_writer() called
during nilfs2 unmount.
Analysis revealed that this is because nilfs_segctor_sync(), which
synchronizes with the log writer thread, can be called after
nilfs_segctor_destroy() terminates that thread, as shown in the call trace
below:
nilfs_detach_log_writer
nilfs_segctor_destroy
nilfs_segctor_kill_thread --> Shut down log writer thread
flush_work
nilfs_iput_work_func
nilfs_dispose_list
iput
nilfs_evict_inode
nilfs_transaction_commit
nilfs_construct_segment (if inode needs sync)
nilfs_segctor_sync --> Attempt to synchronize with
log writer thread
*** DEADLOCK ***
Fix this issue by changing nilfs_segctor_sync() so that the log writer
thread returns normally without synchronizing after it terminates, and by
forcing tasks that are already waiting to complete once after the thread
terminates.
The skipped inode metadata flushout will then be processed together in the
subsequent cleanup work in nilfs_segctor_destroy(). |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: bcm - Fix pointer arithmetic
In spu2_dump_omd() value of ptr is increased by ciph_key_len
instead of hash_iv_len which could lead to going beyond the
buffer boundaries.
Fix this bug by changing ciph_key_len to hash_iv_len.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
ecryptfs: Fix buffer size for tag 66 packet
The 'TAG 66 Packet Format' description is missing the cipher code and
checksum fields that are packed into the message packet. As a result,
the buffer allocated for the packet is 3 bytes too small and
write_tag_66_packet() will write up to 3 bytes past the end of the
buffer.
Fix this by increasing the size of the allocation so the whole packet
will always fit in the buffer.
This fixes the below kasan slab-out-of-bounds bug:
BUG: KASAN: slab-out-of-bounds in ecryptfs_generate_key_packet_set+0x7d6/0xde0
Write of size 1 at addr ffff88800afbb2a5 by task touch/181
CPU: 0 PID: 181 Comm: touch Not tainted 6.6.13-gnu #1 4c9534092be820851bb687b82d1f92a426598dc6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2/GNU Guix 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x4c/0x70
print_report+0xc5/0x610
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
? kasan_complete_mode_report_info+0x44/0x210
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
kasan_report+0xc2/0x110
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
__asan_store1+0x62/0x80
ecryptfs_generate_key_packet_set+0x7d6/0xde0
? __pfx_ecryptfs_generate_key_packet_set+0x10/0x10
? __alloc_pages+0x2e2/0x540
? __pfx_ovl_open+0x10/0x10 [overlay 30837f11141636a8e1793533a02e6e2e885dad1d]
? dentry_open+0x8f/0xd0
ecryptfs_write_metadata+0x30a/0x550
? __pfx_ecryptfs_write_metadata+0x10/0x10
? ecryptfs_get_lower_file+0x6b/0x190
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
? __pfx_path_openat+0x10/0x10
do_filp_open+0x15e/0x290
? __pfx_do_filp_open+0x10/0x10
? __kasan_check_write+0x18/0x30
? _raw_spin_lock+0x86/0xf0
? __pfx__raw_spin_lock+0x10/0x10
? __kasan_check_write+0x18/0x30
? alloc_fd+0xf4/0x330
do_sys_openat2+0x122/0x160
? __pfx_do_sys_openat2+0x10/0x10
__x64_sys_openat+0xef/0x170
? __pfx___x64_sys_openat+0x10/0x10
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f00a703fd67
Code: 25 00 00 41 00 3d 00 00 41 00 74 37 64 8b 04 25 18 00 00 00 85 c0 75 5b 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 85 00 00 00 48 83 c4 68 5d 41 5c c3 0f 1f
RSP: 002b:00007ffc088e30b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 00007ffc088e3368 RCX: 00007f00a703fd67
RDX: 0000000000000941 RSI: 00007ffc088e48d7 RDI: 00000000ffffff9c
RBP: 00007ffc088e48d7 R08: 0000000000000001 R09: 0000000000000000
R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941
R13: 0000000000000000 R14: 00007ffc088e48d7 R15: 00007f00a7180040
</TASK>
Allocated by task 181:
kasan_save_stack+0x2f/0x60
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x25/0x40
__kasan_kmalloc+0xc5/0xd0
__kmalloc+0x66/0x160
ecryptfs_generate_key_packet_set+0x6d2/0xde0
ecryptfs_write_metadata+0x30a/0x550
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
do_filp_open+0x15e/0x290
do_sys_openat2+0x122/0x160
__x64_sys_openat+0xef/0x170
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: add a proper sanity check for endpoints
Syzkaller reports [1] hitting a warning which is caused by presence
of a wrong endpoint type at the URB sumbitting stage. While there
was a check for a specific 4th endpoint, since it can switch types
between bulk and interrupt, other endpoints are trusted implicitly.
Similar warning is triggered in a couple of other syzbot issues [2].
Fix the issue by doing a comprehensive check of all endpoints
taking into account difference between high- and full-speed
configuration.
[1] Syzkaller report:
...
WARNING: CPU: 0 PID: 4721 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
...
Call Trace:
<TASK>
carl9170_usb_send_rx_irq_urb+0x273/0x340 drivers/net/wireless/ath/carl9170/usb.c:504
carl9170_usb_init_device drivers/net/wireless/ath/carl9170/usb.c:939 [inline]
carl9170_usb_firmware_finish drivers/net/wireless/ath/carl9170/usb.c:999 [inline]
carl9170_usb_firmware_step2+0x175/0x240 drivers/net/wireless/ath/carl9170/usb.c:1028
request_firmware_work_func+0x130/0x240 drivers/base/firmware_loader/main.c:1107
process_one_work+0x9bf/0x1710 kernel/workqueue.c:2289
worker_thread+0x669/0x1090 kernel/workqueue.c:2436
kthread+0x2e8/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308
</TASK>
[2] Related syzkaller crashes: |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ar5523: enable proper endpoint verification
Syzkaller reports [1] hitting a warning about an endpoint in use
not having an expected type to it.
Fix the issue by checking for the existence of all proper
endpoints with their according types intact.
Sadly, this patch has not been tested on real hardware.
[1] Syzkaller report:
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 3643 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
...
Call Trace:
<TASK>
ar5523_cmd+0x41b/0x780 drivers/net/wireless/ath/ar5523/ar5523.c:275
ar5523_cmd_read drivers/net/wireless/ath/ar5523/ar5523.c:302 [inline]
ar5523_host_available drivers/net/wireless/ath/ar5523/ar5523.c:1376 [inline]
ar5523_probe+0x14b0/0x1d10 drivers/net/wireless/ath/ar5523/ar5523.c:1655
usb_probe_interface+0x30f/0x7f0 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:560 [inline]
really_probe+0x249/0xb90 drivers/base/dd.c:639
__driver_probe_device+0x1df/0x4d0 drivers/base/dd.c:778
driver_probe_device+0x4c/0x1a0 drivers/base/dd.c:808
__device_attach_driver+0x1d4/0x2e0 drivers/base/dd.c:936
bus_for_each_drv+0x163/0x1e0 drivers/base/bus.c:427
__device_attach+0x1e4/0x530 drivers/base/dd.c:1008
bus_probe_device+0x1e8/0x2a0 drivers/base/bus.c:487
device_add+0xbd9/0x1e90 drivers/base/core.c:3517
usb_set_configuration+0x101d/0x1900 drivers/usb/core/message.c:2170
usb_generic_driver_probe+0xbe/0x100 drivers/usb/core/generic.c:238
usb_probe_device+0xd8/0x2c0 drivers/usb/core/driver.c:293
call_driver_probe drivers/base/dd.c:560 [inline]
really_probe+0x249/0xb90 drivers/base/dd.c:639
__driver_probe_device+0x1df/0x4d0 drivers/base/dd.c:778
driver_probe_device+0x4c/0x1a0 drivers/base/dd.c:808
__device_attach_driver+0x1d4/0x2e0 drivers/base/dd.c:936
bus_for_each_drv+0x163/0x1e0 drivers/base/bus.c:427
__device_attach+0x1e4/0x530 drivers/base/dd.c:1008
bus_probe_device+0x1e8/0x2a0 drivers/base/bus.c:487
device_add+0xbd9/0x1e90 drivers/base/core.c:3517
usb_new_device.cold+0x685/0x10ad drivers/usb/core/hub.c:2573
hub_port_connect drivers/usb/core/hub.c:5353 [inline]
hub_port_connect_change drivers/usb/core/hub.c:5497 [inline]
port_event drivers/usb/core/hub.c:5653 [inline]
hub_event+0x26cb/0x45d0 drivers/usb/core/hub.c:5735
process_one_work+0x9bf/0x1710 kernel/workqueue.c:2289
worker_thread+0x669/0x1090 kernel/workqueue.c:2436
kthread+0x2e8/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: bfa: Ensure the copied buf is NUL terminated
Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from
userspace to that buffer. Later, we use sscanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using sscanf. Fix this issue by using memdup_user_nul instead
of memdup_user. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Ensure the copied buf is NUL terminated
Currently, we allocate a count-sized kernel buffer and copy count from
userspace to that buffer. Later, we use kstrtouint on this buffer but we
don't ensure that the string is terminated inside the buffer, this can
lead to OOB read when using kstrtouint. Fix this issue by using
memdup_user_nul instead of memdup_user. |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix overwriting ct original tuple for ICMPv6
OVS_PACKET_CMD_EXECUTE has 3 main attributes:
- OVS_PACKET_ATTR_KEY - Packet metadata in a netlink format.
- OVS_PACKET_ATTR_PACKET - Binary packet content.
- OVS_PACKET_ATTR_ACTIONS - Actions to execute on the packet.
OVS_PACKET_ATTR_KEY is parsed first to populate sw_flow_key structure
with the metadata like conntrack state, input port, recirculation id,
etc. Then the packet itself gets parsed to populate the rest of the
keys from the packet headers.
Whenever the packet parsing code starts parsing the ICMPv6 header, it
first zeroes out fields in the key corresponding to Neighbor Discovery
information even if it is not an ND packet.
It is an 'ipv6.nd' field. However, the 'ipv6' is a union that shares
the space between 'nd' and 'ct_orig' that holds the original tuple
conntrack metadata parsed from the OVS_PACKET_ATTR_KEY.
ND packets should not normally have conntrack state, so it's fine to
share the space, but normal ICMPv6 Echo packets or maybe other types of
ICMPv6 can have the state attached and it should not be overwritten.
The issue results in all but the last 4 bytes of the destination
address being wiped from the original conntrack tuple leading to
incorrect packet matching and potentially executing wrong actions
in case this packet recirculates within the datapath or goes back
to userspace.
ND fields should not be accessed in non-ND packets, so not clearing
them should be fine. Executing memset() only for actual ND packets to
avoid the issue.
Initializing the whole thing before parsing is needed because ND packet
may not contain all the options.
The issue only affects the OVS_PACKET_CMD_EXECUTE path and doesn't
affect packets entering OVS datapath from network interfaces, because
in this case CT metadata is populated from skb after the packet is
already parsed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential index out of bounds in color transformation function
Fixes index out of bounds issue in the color transformation function.
The issue could occur when the index 'i' exceeds the number of transfer
function points (TRANSFER_FUNC_POINTS).
The fix adds a check to ensure 'i' is within bounds before accessing the
transfer function points. If 'i' is out of bounds, an error message is
logged and the function returns false to indicate an error.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:405 cm_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:406 cm_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max
drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:407 cm_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Add 0 size check to mtk_drm_gem_obj
Add a check to mtk_drm_gem_init if we attempt to allocate a GEM object
of 0 bytes. Currently, no such check exists and the kernel will panic if
a userspace application attempts to allocate a 0x0 GBM buffer.
Tested by attempting to allocate a 0x0 GBM buffer on an MT8188 and
verifying that we now return EINVAL. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: Fix uninit-value in nci_rx_work
syzbot reported the following uninit-value access issue [1]
nci_rx_work() parses received packet from ndev->rx_q. It should be
validated header size, payload size and total packet size before
processing the packet. If an invalid packet is detected, it should be
silently discarded. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix shift-out-of-bounds in dctcp_update_alpha().
In dctcp_update_alpha(), we use a module parameter dctcp_shift_g
as follows:
alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g);
...
delivered_ce <<= (10 - dctcp_shift_g);
It seems syzkaller started fuzzing module parameters and triggered
shift-out-of-bounds [0] by setting 100 to dctcp_shift_g:
memcpy((void*)0x20000080,
"/sys/module/tcp_dctcp/parameters/dctcp_shift_g\000", 47);
res = syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0x20000080ul,
/*flags=*/2ul, /*mode=*/0ul);
memcpy((void*)0x20000000, "100\000", 4);
syscall(__NR_write, /*fd=*/r[0], /*val=*/0x20000000ul, /*len=*/4ul);
Let's limit the max value of dctcp_shift_g by param_set_uint_minmax().
With this patch:
# echo 10 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g
# cat /sys/module/tcp_dctcp/parameters/dctcp_shift_g
10
# echo 11 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g
-bash: echo: write error: Invalid argument
[0]:
UBSAN: shift-out-of-bounds in net/ipv4/tcp_dctcp.c:143:12
shift exponent 100 is too large for 32-bit type 'u32' (aka 'unsigned int')
CPU: 0 PID: 8083 Comm: syz-executor345 Not tainted 6.9.0-05151-g1b294a1f3561 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x201/0x300 lib/dump_stack.c:114
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_shift_out_of_bounds+0x346/0x3a0 lib/ubsan.c:468
dctcp_update_alpha+0x540/0x570 net/ipv4/tcp_dctcp.c:143
tcp_in_ack_event net/ipv4/tcp_input.c:3802 [inline]
tcp_ack+0x17b1/0x3bc0 net/ipv4/tcp_input.c:3948
tcp_rcv_state_process+0x57a/0x2290 net/ipv4/tcp_input.c:6711
tcp_v4_do_rcv+0x764/0xc40 net/ipv4/tcp_ipv4.c:1937
sk_backlog_rcv include/net/sock.h:1106 [inline]
__release_sock+0x20f/0x350 net/core/sock.c:2983
release_sock+0x61/0x1f0 net/core/sock.c:3549
mptcp_subflow_shutdown+0x3d0/0x620 net/mptcp/protocol.c:2907
mptcp_check_send_data_fin+0x225/0x410 net/mptcp/protocol.c:2976
__mptcp_close+0x238/0xad0 net/mptcp/protocol.c:3072
mptcp_close+0x2a/0x1a0 net/mptcp/protocol.c:3127
inet_release+0x190/0x1f0 net/ipv4/af_inet.c:437
__sock_release net/socket.c:659 [inline]
sock_close+0xc0/0x240 net/socket.c:1421
__fput+0x41b/0x890 fs/file_table.c:422
task_work_run+0x23b/0x300 kernel/task_work.c:180
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x9c8/0x2540 kernel/exit.c:878
do_group_exit+0x201/0x2b0 kernel/exit.c:1027
__do_sys_exit_group kernel/exit.c:1038 [inline]
__se_sys_exit_group kernel/exit.c:1036 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1036
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xe4/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f6c2b5005b6
Code: Unable to access opcode bytes at 0x7f6c2b50058c.
RSP: 002b:00007ffe883eb948 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00007f6c2b5862f0 RCX: 00007f6c2b5005b6
RDX: 0000000000000001 RSI: 000000000000003c RDI: 0000000000000001
RBP: 0000000000000001 R08: 00000000000000e7 R09: ffffffffffffffc0
R10: 0000000000000006 R11: 0000000000000246 R12: 00007f6c2b5862f0
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix loop termination condition in gss_free_in_token_pages()
The in_token->pages[] array is not NULL terminated. This results in
the following KASAN splat:
KASAN: maybe wild-memory-access in range [0x04a2013400000008-0x04a201340000000f] |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_queue: acquire rcu_read_lock() in instance_destroy_rcu()
syzbot reported that nf_reinject() could be called without rcu_read_lock() :
WARNING: suspicious RCU usage
6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0 Not tainted
net/netfilter/nfnetlink_queue.c:263 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by syz-executor.4/13427:
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:329 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2190 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_core+0xa86/0x1830 kernel/rcu/tree.c:2471
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: nfqnl_flush net/netfilter/nfnetlink_queue.c:405 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: instance_destroy_rcu+0x30/0x220 net/netfilter/nfnetlink_queue.c:172
stack backtrace:
CPU: 0 PID: 13427 Comm: syz-executor.4 Not tainted 6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712
nf_reinject net/netfilter/nfnetlink_queue.c:323 [inline]
nfqnl_reinject+0x6ec/0x1120 net/netfilter/nfnetlink_queue.c:397
nfqnl_flush net/netfilter/nfnetlink_queue.c:410 [inline]
instance_destroy_rcu+0x1ae/0x220 net/netfilter/nfnetlink_queue.c:172
rcu_do_batch kernel/rcu/tree.c:2196 [inline]
rcu_core+0xafd/0x1830 kernel/rcu/tree.c:2471
handle_softirqs+0x2d6/0x990 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637
irq_exit_rcu+0x9/0x30 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043
</IRQ>
<TASK> |
| The web interface of the affected devices process some crafted HTTP requests improperly, leading to a device crash. More precisely, a crafted parameter to billcodedef_sub_sel.html is not processed properly and device-crash happens. As for the details of affected product names, model numbers, and versions, refer to the information provided by the respective vendors listed under [References]. |
| API keys for some cloud services are hardcoded in the "main" binary. As for the details of affected product names, model numbers, and versions, refer to the information provided by the respective vendors listed under [References]. |
| In the Linux kernel, the following vulnerability has been resolved:
keys: Fix overwrite of key expiration on instantiation
The expiry time of a key is unconditionally overwritten during
instantiation, defaulting to turn it permanent. This causes a problem
for DNS resolution as the expiration set by user-space is overwritten to
TIME64_MAX, disabling further DNS updates. Fix this by restoring the
condition that key_set_expiry is only called when the pre-parser sets a
specific expiry. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix possible out-of-bounds in gsm0_receive()
Assuming the following:
- side A configures the n_gsm in basic option mode
- side B sends the header of a basic option mode frame with data length 1
- side A switches to advanced option mode
- side B sends 2 data bytes which exceeds gsm->len
Reason: gsm->len is not used in advanced option mode.
- side A switches to basic option mode
- side B keeps sending until gsm0_receive() writes past gsm->buf
Reason: Neither gsm->state nor gsm->len have been reset after
reconfiguration.
Fix this by changing gsm->count to gsm->len comparison from equal to less
than. Also add upper limit checks against the constant MAX_MRU in
gsm0_receive() and gsm1_receive() to harden against memory corruption of
gsm->len and gsm->mru.
All other checks remain as we still need to limit the data according to the
user configuration and actual payload size. |