| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: fix error checks in dasd_copy_pair_store()
dasd_add_busid() can return an error via ERR_PTR() if an allocation
fails. However, two callsites in dasd_copy_pair_store() do not check
the result, potentially resulting in a NULL pointer dereference. Fix
this by checking the result with IS_ERR() and returning the error up
the stack. |
| In the Linux kernel, the following vulnerability has been resolved:
landlock: Don't lose track of restrictions on cred_transfer
When a process' cred struct is replaced, this _almost_ always invokes
the cred_prepare LSM hook; but in one special case (when
KEYCTL_SESSION_TO_PARENT updates the parent's credentials), the
cred_transfer LSM hook is used instead. Landlock only implements the
cred_prepare hook, not cred_transfer, so KEYCTL_SESSION_TO_PARENT causes
all information on Landlock restrictions to be lost.
This basically means that a process with the ability to use the fork()
and keyctl() syscalls can get rid of all Landlock restrictions on
itself.
Fix it by adding a cred_transfer hook that does the same thing as the
existing cred_prepare hook. (Implemented by having hook_cred_prepare()
call hook_cred_transfer() so that the two functions are less likely to
accidentally diverge in the future.) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mglru: fix div-by-zero in vmpressure_calc_level()
evict_folios() uses a second pass to reclaim folios that have gone through
page writeback and become clean before it finishes the first pass, since
folio_rotate_reclaimable() cannot handle those folios due to the
isolation.
The second pass tries to avoid potential double counting by deducting
scan_control->nr_scanned. However, this can result in underflow of
nr_scanned, under a condition where shrink_folio_list() does not increment
nr_scanned, i.e., when folio_trylock() fails.
The underflow can cause the divisor, i.e., scale=scanned+reclaimed in
vmpressure_calc_level(), to become zero, resulting in the following crash:
[exception RIP: vmpressure_work_fn+101]
process_one_work at ffffffffa3313f2b
Since scan_control->nr_scanned has no established semantics, the potential
double counting has minimal risks. Therefore, fix the problem by not
deducting scan_control->nr_scanned in evict_folios(). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix extent map use-after-free when adding pages to compressed bio
At add_ra_bio_pages() we are accessing the extent map to calculate
'add_size' after we dropped our reference on the extent map, resulting
in a use-after-free. Fix this by computing 'add_size' before dropping our
extent map reference. |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: fix use after free in vdec_close
There appears to be a possible use after free with vdec_close().
The firmware will add buffer release work to the work queue through
HFI callbacks as a normal part of decoding. Randomly closing the
decoder device from userspace during normal decoding can incur
a read after free for inst.
Fix it by cancelling the work in vdec_close. |
| In the Linux kernel, the following vulnerability has been resolved:
sysctl: always initialize i_uid/i_gid
Always initialize i_uid/i_gid inside the sysfs core so set_ownership()
can safely skip setting them.
Commit 5ec27ec735ba ("fs/proc/proc_sysctl.c: fix the default values of
i_uid/i_gid on /proc/sys inodes.") added defaults for i_uid/i_gid when
set_ownership() was not implemented. It also missed adjusting
net_ctl_set_ownership() to use the same default values in case the
computation of a better value failed. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix to initialize fields of hfs_inode_info after hfs_alloc_inode()
Syzbot reports uninitialized value access issue as below:
loop0: detected capacity change from 0 to 64
=====================================================
BUG: KMSAN: uninit-value in hfs_revalidate_dentry+0x307/0x3f0 fs/hfs/sysdep.c:30
hfs_revalidate_dentry+0x307/0x3f0 fs/hfs/sysdep.c:30
d_revalidate fs/namei.c:862 [inline]
lookup_fast+0x89e/0x8e0 fs/namei.c:1649
walk_component fs/namei.c:2001 [inline]
link_path_walk+0x817/0x1480 fs/namei.c:2332
path_lookupat+0xd9/0x6f0 fs/namei.c:2485
filename_lookup+0x22e/0x740 fs/namei.c:2515
user_path_at_empty+0x8b/0x390 fs/namei.c:2924
user_path_at include/linux/namei.h:57 [inline]
do_mount fs/namespace.c:3689 [inline]
__do_sys_mount fs/namespace.c:3898 [inline]
__se_sys_mount+0x66b/0x810 fs/namespace.c:3875
__x64_sys_mount+0xe4/0x140 fs/namespace.c:3875
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
BUG: KMSAN: uninit-value in hfs_ext_read_extent fs/hfs/extent.c:196 [inline]
BUG: KMSAN: uninit-value in hfs_get_block+0x92d/0x1620 fs/hfs/extent.c:366
hfs_ext_read_extent fs/hfs/extent.c:196 [inline]
hfs_get_block+0x92d/0x1620 fs/hfs/extent.c:366
block_read_full_folio+0x4ff/0x11b0 fs/buffer.c:2271
hfs_read_folio+0x55/0x60 fs/hfs/inode.c:39
filemap_read_folio+0x148/0x4f0 mm/filemap.c:2426
do_read_cache_folio+0x7c8/0xd90 mm/filemap.c:3553
do_read_cache_page mm/filemap.c:3595 [inline]
read_cache_page+0xfb/0x2f0 mm/filemap.c:3604
read_mapping_page include/linux/pagemap.h:755 [inline]
hfs_btree_open+0x928/0x1ae0 fs/hfs/btree.c:78
hfs_mdb_get+0x260c/0x3000 fs/hfs/mdb.c:204
hfs_fill_super+0x1fb1/0x2790 fs/hfs/super.c:406
mount_bdev+0x628/0x920 fs/super.c:1359
hfs_mount+0xcd/0xe0 fs/hfs/super.c:456
legacy_get_tree+0x167/0x2e0 fs/fs_context.c:610
vfs_get_tree+0xdc/0x5d0 fs/super.c:1489
do_new_mount+0x7a9/0x16f0 fs/namespace.c:3145
path_mount+0xf98/0x26a0 fs/namespace.c:3475
do_mount fs/namespace.c:3488 [inline]
__do_sys_mount fs/namespace.c:3697 [inline]
__se_sys_mount+0x919/0x9e0 fs/namespace.c:3674
__ia32_sys_mount+0x15b/0x1b0 fs/namespace.c:3674
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9a6/0xe00 mm/page_alloc.c:4590
__alloc_pages_node include/linux/gfp.h:238 [inline]
alloc_pages_node include/linux/gfp.h:261 [inline]
alloc_slab_page mm/slub.c:2190 [inline]
allocate_slab mm/slub.c:2354 [inline]
new_slab+0x2d7/0x1400 mm/slub.c:2407
___slab_alloc+0x16b5/0x3970 mm/slub.c:3540
__slab_alloc mm/slub.c:3625 [inline]
__slab_alloc_node mm/slub.c:3678 [inline]
slab_alloc_node mm/slub.c:3850 [inline]
kmem_cache_alloc_lru+0x64d/0xb30 mm/slub.c:3879
alloc_inode_sb include/linux/fs.h:3018 [inline]
hfs_alloc_inode+0x5a/0xc0 fs/hfs/super.c:165
alloc_inode+0x83/0x440 fs/inode.c:260
new_inode_pseudo fs/inode.c:1005 [inline]
new_inode+0x38/0x4f0 fs/inode.c:1031
hfs_new_inode+0x61/0x1010 fs/hfs/inode.c:186
hfs_mkdir+0x54/0x250 fs/hfs/dir.c:228
vfs_mkdir+0x49a/0x700 fs/namei.c:4126
do_mkdirat+0x529/0x810 fs/namei.c:4149
__do_sys_mkdirat fs/namei.c:4164 [inline]
__se_sys_mkdirat fs/namei.c:4162 [inline]
__x64_sys_mkdirat+0xc8/0x120 fs/namei.c:4162
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
It missed to initialize .tz_secondswest, .cached_start and .cached_blocks
fields in struct hfs_inode_info after hfs_alloc_inode(), fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: fix null pointer dereference in cdv_intel_lvds_get_modes
In cdv_intel_lvds_get_modes(), the return value of drm_mode_duplicate()
is assigned to mode, which will lead to a NULL pointer dereference on
failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: fix null pointer dereference in psb_intel_lvds_get_modes
In psb_intel_lvds_get_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a possible NULL pointer dereference
on failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential null pointer use in destroy_workqueue in init_cifs error path
Dan Carpenter reported a Smack static checker warning:
fs/smb/client/cifsfs.c:1981 init_cifs()
error: we previously assumed 'serverclose_wq' could be null (see line 1895)
The patch which introduced the serverclose workqueue used the wrong
oredering in error paths in init_cifs() for freeing it on errors. |
| In the Linux kernel, the following vulnerability has been resolved:
udf: Avoid using corrupted block bitmap buffer
When the filesystem block bitmap is corrupted, we detect the corruption
while loading the bitmap and fail the allocation with error. However the
next allocation from the same bitmap will notice the bitmap buffer is
already loaded and tries to allocate from the bitmap with mixed results
(depending on the exact nature of the bitmap corruption). Fix the
problem by using BH_verified bit to indicate whether the bitmap is valid
or not. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: check dot and dotdot of dx_root before making dir indexed
Syzbot reports a issue as follows:
============================================
BUG: unable to handle page fault for address: ffffed11022e24fe
PGD 23ffee067 P4D 23ffee067 PUD 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 PID: 5079 Comm: syz-executor306 Not tainted 6.10.0-rc5-g55027e689933 #0
Call Trace:
<TASK>
make_indexed_dir+0xdaf/0x13c0 fs/ext4/namei.c:2341
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2451
ext4_rename fs/ext4/namei.c:3936 [inline]
ext4_rename2+0x26e5/0x4370 fs/ext4/namei.c:4214
[...]
============================================
The immediate cause of this problem is that there is only one valid dentry
for the block to be split during do_split, so split==0 results in out of
bounds accesses to the map triggering the issue.
do_split
unsigned split
dx_make_map
count = 1
split = count/2 = 0;
continued = hash2 == map[split - 1].hash;
---> map[4294967295]
The maximum length of a filename is 255 and the minimum block size is 1024,
so it is always guaranteed that the number of entries is greater than or
equal to 2 when do_split() is called.
But syzbot's crafted image has no dot and dotdot in dir, and the dentry
distribution in dirblock is as follows:
bus dentry1 hole dentry2 free
|xx--|xx-------------|...............|xx-------------|...............|
0 12 (8+248)=256 268 256 524 (8+256)=264 788 236 1024
So when renaming dentry1 increases its name_len length by 1, neither hole
nor free is sufficient to hold the new dentry, and make_indexed_dir() is
called.
In make_indexed_dir() it is assumed that the first two entries of the
dirblock must be dot and dotdot, so bus and dentry1 are left in dx_root
because they are treated as dot and dotdot, and only dentry2 is moved
to the new leaf block. That's why count is equal to 1.
Therefore add the ext4_check_dx_root() helper function to add more sanity
checks to dot and dotdot before starting the conversion to avoid the above
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: make sure the first directory block is not a hole
The syzbot constructs a directory that has no dirblock but is non-inline,
i.e. the first directory block is a hole. And no errors are reported when
creating files in this directory in the following flow.
ext4_mknod
...
ext4_add_entry
// Read block 0
ext4_read_dirblock(dir, block, DIRENT)
bh = ext4_bread(NULL, inode, block, 0)
if (!bh && (type == INDEX || type == DIRENT_HTREE))
// The first directory block is a hole
// But type == DIRENT, so no error is reported.
After that, we get a directory block without '.' and '..' but with a valid
dentry. This may cause some code that relies on dot or dotdot (such as
make_indexed_dir()) to crash.
Therefore when ext4_read_dirblock() finds that the first directory block
is a hole report that the filesystem is corrupted and return an error to
avoid loading corrupted data from disk causing something bad. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DPC: Fix use-after-free on concurrent DPC and hot-removal
Keith reports a use-after-free when a DPC event occurs concurrently to
hot-removal of the same portion of the hierarchy:
The dpc_handler() awaits readiness of the secondary bus below the
Downstream Port where the DPC event occurred. To do so, it polls the
config space of the first child device on the secondary bus. If that
child device is concurrently removed, accesses to its struct pci_dev
cause the kernel to oops.
That's because pci_bridge_wait_for_secondary_bus() neglects to hold a
reference on the child device. Before v6.3, the function was only
called on resume from system sleep or on runtime resume. Holding a
reference wasn't necessary back then because the pciehp IRQ thread
could never run concurrently. (On resume from system sleep, IRQs are
not enabled until after the resume_noirq phase. And runtime resume is
always awaited before a PCI device is removed.)
However starting with v6.3, pci_bridge_wait_for_secondary_bus() is also
called on a DPC event. Commit 53b54ad074de ("PCI/DPC: Await readiness
of secondary bus after reset"), which introduced that, failed to
appreciate that pci_bridge_wait_for_secondary_bus() now needs to hold a
reference on the child device because dpc_handler() and pciehp may
indeed run concurrently. The commit was backported to v5.10+ stable
kernels, so that's the oldest one affected.
Add the missing reference acquisition.
Abridged stack trace:
BUG: unable to handle page fault for address: 00000000091400c0
CPU: 15 PID: 2464 Comm: irq/53-pcie-dpc 6.9.0
RIP: pci_bus_read_config_dword+0x17/0x50
pci_dev_wait()
pci_bridge_wait_for_secondary_bus()
dpc_reset_link()
pcie_do_recovery()
dpc_handler() |
| In the Linux kernel, the following vulnerability has been resolved:
dev/parport: fix the array out-of-bounds risk
Fixed array out-of-bounds issues caused by sprintf
by replacing it with snprintf for safer data copying,
ensuring the destination buffer is not overflowed.
Below is the stack trace I encountered during the actual issue:
[ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport]
[ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm:
QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2
[ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp
[ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun
PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024
[ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace:
[ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0
[ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20
[ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c
[ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc
[ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38
[ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport] |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Update log->page_{mask,bits} if log->page_size changed
If an NTFS file system is mounted to another system with different
PAGE_SIZE from the original system, log->page_size will change in
log_replay(), but log->page_{mask,bits} don't change correspondingly.
This will cause a panic because "u32 bytes = log->page_size - page_off"
will get a negative value in the later read_log_page(). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to don't dirty inode for readonly filesystem
syzbot reports f2fs bug as below:
kernel BUG at fs/f2fs/inode.c:933!
RIP: 0010:f2fs_evict_inode+0x1576/0x1590 fs/f2fs/inode.c:933
Call Trace:
evict+0x2a4/0x620 fs/inode.c:664
dispose_list fs/inode.c:697 [inline]
evict_inodes+0x5f8/0x690 fs/inode.c:747
generic_shutdown_super+0x9d/0x2c0 fs/super.c:675
kill_block_super+0x44/0x90 fs/super.c:1667
kill_f2fs_super+0x303/0x3b0 fs/f2fs/super.c:4894
deactivate_locked_super+0xc1/0x130 fs/super.c:484
cleanup_mnt+0x426/0x4c0 fs/namespace.c:1256
task_work_run+0x24a/0x300 kernel/task_work.c:180
ptrace_notify+0x2cd/0x380 kernel/signal.c:2399
ptrace_report_syscall include/linux/ptrace.h:411 [inline]
ptrace_report_syscall_exit include/linux/ptrace.h:473 [inline]
syscall_exit_work kernel/entry/common.c:251 [inline]
syscall_exit_to_user_mode_prepare kernel/entry/common.c:278 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:283 [inline]
syscall_exit_to_user_mode+0x15c/0x280 kernel/entry/common.c:296
do_syscall_64+0x50/0x110 arch/x86/entry/common.c:88
entry_SYSCALL_64_after_hwframe+0x63/0x6b
The root cause is:
- do_sys_open
- f2fs_lookup
- __f2fs_find_entry
- f2fs_i_depth_write
- f2fs_mark_inode_dirty_sync
- f2fs_dirty_inode
- set_inode_flag(inode, FI_DIRTY_INODE)
- umount
- kill_f2fs_super
- kill_block_super
- generic_shutdown_super
- sync_filesystem
: sb is readonly, skip sync_filesystem()
- evict_inodes
- iput
- f2fs_evict_inode
- f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE))
: trigger kernel panic
When we try to repair i_current_depth in readonly filesystem, let's
skip dirty inode to avoid panic in later f2fs_evict_inode(). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix return value of f2fs_convert_inline_inode()
If device is readonly, make f2fs_convert_inline_inode()
return EROFS instead of zero, otherwise it may trigger
panic during writeback of inline inode's dirty page as
below:
f2fs_write_single_data_page+0xbb6/0x1e90 fs/f2fs/data.c:2888
f2fs_write_cache_pages fs/f2fs/data.c:3187 [inline]
__f2fs_write_data_pages fs/f2fs/data.c:3342 [inline]
f2fs_write_data_pages+0x1efe/0x3a90 fs/f2fs/data.c:3369
do_writepages+0x359/0x870 mm/page-writeback.c:2634
filemap_fdatawrite_wbc+0x125/0x180 mm/filemap.c:397
__filemap_fdatawrite_range mm/filemap.c:430 [inline]
file_write_and_wait_range+0x1aa/0x290 mm/filemap.c:788
f2fs_do_sync_file+0x68a/0x1ae0 fs/f2fs/file.c:276
generic_write_sync include/linux/fs.h:2806 [inline]
f2fs_file_write_iter+0x7bd/0x24e0 fs/f2fs/file.c:4977
call_write_iter include/linux/fs.h:2114 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xa72/0xc90 fs/read_write.c:590
ksys_write+0x1a0/0x2c0 fs/read_write.c:643
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: handle inconsistent state in nilfs_btnode_create_block()
Syzbot reported that a buffer state inconsistency was detected in
nilfs_btnode_create_block(), triggering a kernel bug.
It is not appropriate to treat this inconsistency as a bug; it can occur
if the argument block address (the buffer index of the newly created
block) is a virtual block number and has been reallocated due to
corruption of the bitmap used to manage its allocation state.
So, modify nilfs_btnode_create_block() and its callers to treat it as a
possible filesystem error, rather than triggering a kernel bug. |
| In the Linux kernel, the following vulnerability has been resolved:
kobject_uevent: Fix OOB access within zap_modalias_env()
zap_modalias_env() wrongly calculates size of memory block to move, so
will cause OOB memory access issue if variable MODALIAS is not the last
one within its @env parameter, fixed by correcting size to memmove. |