| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| GStreamer is a library for constructing graphs of media-handling components. An OOB-read vulnerability has been detected in the format_channel_mask function in gst-discoverer.c. The vulnerability affects the local array position, which is defined with a fixed size of 64 elements. However, the function gst_discoverer_audio_info_get_channels may return a guint channels value greater than 64. This causes the for loop to attempt access beyond the bounds of the position array, resulting in an OOB-read when an index greater than 63 is used. This vulnerability can result in reading unintended bytes from the stack. Additionally, the dereference of value->value_nick after the OOB-read can lead to further memory corruption or undefined behavior. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. A null pointer dereference has been discovered in the id3v2_read_synch_uint function, located in id3v2.c. If id3v2_read_synch_uint is called with a null work->hdr.frame_data, the pointer guint8 *data is accessed without validation, resulting in a null pointer dereference. This vulnerability can result in a Denial of Service (DoS) by triggering a segmentation fault (SEGV). This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. An OOB-write vulnerability has been identified in the gst_ssa_parse_remove_override_codes function of the gstssaparse.c file. This function is responsible for parsing and removing SSA (SubStation Alpha) style override codes, which are enclosed in curly brackets ({}). The issue arises when a closing curly bracket "}" appears before an opening curly bracket "{" in the input string. In this case, memmove() incorrectly duplicates a substring. With each successive loop iteration, the size passed to memmove() becomes progressively larger (strlen(end+1)), leading to a write beyond the allocated memory bounds. This vulnerability is fixed in 1.24.10. |
| GStreamer is a library for constructing graphs of media-handling components. A stack-buffer overflow has been detected in the `vorbis_handle_identification_packet` function within `gstvorbisdec.c`. The position array is a stack-allocated buffer of size 64. If vd->vi.channels exceeds 64, the for loop will write beyond the boundaries of the position array. The value written will always be `GST_AUDIO_CHANNEL_POSITION_NONE`. This vulnerability allows someone to overwrite the EIP address allocated in the stack. Additionally, this bug can overwrite the `GstAudioInfo` info structure. This vulnerability is fixed in 1.24.10. |
| CUPS is a standards-based, open-source printing system, and `libppd` can be used for legacy PPD file support. The `libppd` function `ppdCreatePPDFromIPP2` does not sanitize IPP attributes when creating the PPD buffer. When used in combination with other functions such as `cfGetPrinterAttributes5`, can result in user controlled input and ultimately code execution via Foomatic. This vulnerability can be part of an exploit chain leading to remote code execution (RCE), as described in CVE-2024-47176. |
| CUPS is a standards-based, open-source printing system, and `libcupsfilters` contains the code of the filters of the former `cups-filters` package as library functions to be used for the data format conversion tasks needed in Printer Applications. The `cfGetPrinterAttributes5` function in `libcupsfilters` does not sanitize IPP attributes returned from an IPP server. When these IPP attributes are used, for instance, to generate a PPD file, this can lead to attacker controlled data to be provided to the rest of the CUPS system. |
| An issue was discovered in psi/zfile.c in Artifex Ghostscript before 10.04.0. Out-of-bounds data access in filenameforall can lead to arbitrary code execution. |
| An issue was discovered in base/gsdevice.c in Artifex Ghostscript before 10.04.0. An integer overflow when parsing the filename format string (for the output filename) results in path truncation, and possible path traversal and code execution. |
| An issue was discovered in psi/zcolor.c in Artifex Ghostscript before 10.04.0. An unchecked Implementation pointer in Pattern color space could lead to arbitrary code execution. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Correct the defined value for AMDGPU_DMUB_NOTIFICATION_MAX
[Why & How]
It actually exposes '6' types in enum dmub_notification_type. Not 5. Using smaller
number to create array dmub_callback & dmub_thread_offload has potential to access
item out of array bound. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: nxp-fspi: fix the KASAN report out-of-bounds bug
Change the memcpy length to fix the out-of-bounds issue when writing the
data that is not 4 byte aligned to TX FIFO.
To reproduce the issue, write 3 bytes data to NOR chip.
dd if=3b of=/dev/mtd0
[ 36.926103] ==================================================================
[ 36.933409] BUG: KASAN: slab-out-of-bounds in nxp_fspi_exec_op+0x26ec/0x2838
[ 36.940514] Read of size 4 at addr ffff00081037c2a0 by task dd/455
[ 36.946721]
[ 36.948235] CPU: 3 UID: 0 PID: 455 Comm: dd Not tainted 6.11.0-rc5-gc7b0e37c8434 #1070
[ 36.956185] Hardware name: Freescale i.MX8QM MEK (DT)
[ 36.961260] Call trace:
[ 36.963723] dump_backtrace+0x90/0xe8
[ 36.967414] show_stack+0x18/0x24
[ 36.970749] dump_stack_lvl+0x78/0x90
[ 36.974451] print_report+0x114/0x5cc
[ 36.978151] kasan_report+0xa4/0xf0
[ 36.981670] __asan_report_load_n_noabort+0x1c/0x28
[ 36.986587] nxp_fspi_exec_op+0x26ec/0x2838
[ 36.990800] spi_mem_exec_op+0x8ec/0xd30
[ 36.994762] spi_mem_no_dirmap_read+0x190/0x1e0
[ 36.999323] spi_mem_dirmap_write+0x238/0x32c
[ 37.003710] spi_nor_write_data+0x220/0x374
[ 37.007932] spi_nor_write+0x110/0x2e8
[ 37.011711] mtd_write_oob_std+0x154/0x1f0
[ 37.015838] mtd_write_oob+0x104/0x1d0
[ 37.019617] mtd_write+0xb8/0x12c
[ 37.022953] mtdchar_write+0x224/0x47c
[ 37.026732] vfs_write+0x1e4/0x8c8
[ 37.030163] ksys_write+0xec/0x1d0
[ 37.033586] __arm64_sys_write+0x6c/0x9c
[ 37.037539] invoke_syscall+0x6c/0x258
[ 37.041327] el0_svc_common.constprop.0+0x160/0x22c
[ 37.046244] do_el0_svc+0x44/0x5c
[ 37.049589] el0_svc+0x38/0x78
[ 37.052681] el0t_64_sync_handler+0x13c/0x158
[ 37.057077] el0t_64_sync+0x190/0x194
[ 37.060775]
[ 37.062274] Allocated by task 455:
[ 37.065701] kasan_save_stack+0x2c/0x54
[ 37.069570] kasan_save_track+0x20/0x3c
[ 37.073438] kasan_save_alloc_info+0x40/0x54
[ 37.077736] __kasan_kmalloc+0xa0/0xb8
[ 37.081515] __kmalloc_noprof+0x158/0x2f8
[ 37.085563] mtd_kmalloc_up_to+0x120/0x154
[ 37.089690] mtdchar_write+0x130/0x47c
[ 37.093469] vfs_write+0x1e4/0x8c8
[ 37.096901] ksys_write+0xec/0x1d0
[ 37.100332] __arm64_sys_write+0x6c/0x9c
[ 37.104287] invoke_syscall+0x6c/0x258
[ 37.108064] el0_svc_common.constprop.0+0x160/0x22c
[ 37.112972] do_el0_svc+0x44/0x5c
[ 37.116319] el0_svc+0x38/0x78
[ 37.119401] el0t_64_sync_handler+0x13c/0x158
[ 37.123788] el0t_64_sync+0x190/0x194
[ 37.127474]
[ 37.128977] The buggy address belongs to the object at ffff00081037c2a0
[ 37.128977] which belongs to the cache kmalloc-8 of size 8
[ 37.141177] The buggy address is located 0 bytes inside of
[ 37.141177] allocated 3-byte region [ffff00081037c2a0, ffff00081037c2a3)
[ 37.153465]
[ 37.154971] The buggy address belongs to the physical page:
[ 37.160559] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x89037c
[ 37.168596] flags: 0xbfffe0000000000(node=0|zone=2|lastcpupid=0x1ffff)
[ 37.175149] page_type: 0xfdffffff(slab)
[ 37.179021] raw: 0bfffe0000000000 ffff000800002500 dead000000000122 0000000000000000
[ 37.186788] raw: 0000000000000000 0000000080800080 00000001fdffffff 0000000000000000
[ 37.194553] page dumped because: kasan: bad access detected
[ 37.200144]
[ 37.201647] Memory state around the buggy address:
[ 37.206460] ffff00081037c180: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc
[ 37.213701] ffff00081037c200: fa fc fc fc 05 fc fc fc 03 fc fc fc 02 fc fc fc
[ 37.220946] >ffff00081037c280: 06 fc fc fc 03 fc fc fc fc fc fc fc fc fc fc fc
[ 37.228186] ^
[ 37.232473] ffff00081037c300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 37.239718] ffff00081037c380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 37.246962] ==============================================================
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix smatch static checker warning
adev->gfx.imu.funcs could be NULL |
| In the Linux kernel, the following vulnerability has been resolved:
sched: sch_cake: fix bulk flow accounting logic for host fairness
In sch_cake, we keep track of the count of active bulk flows per host,
when running in dst/src host fairness mode, which is used as the
round-robin weight when iterating through flows. The count of active
bulk flows is updated whenever a flow changes state.
This has a peculiar interaction with the hash collision handling: when a
hash collision occurs (after the set-associative hashing), the state of
the hash bucket is simply updated to match the new packet that collided,
and if host fairness is enabled, that also means assigning new per-host
state to the flow. For this reason, the bulk flow counters of the
host(s) assigned to the flow are decremented, before new state is
assigned (and the counters, which may not belong to the same host
anymore, are incremented again).
Back when this code was introduced, the host fairness mode was always
enabled, so the decrement was unconditional. When the configuration
flags were introduced the *increment* was made conditional, but
the *decrement* was not. Which of course can lead to a spurious
decrement (and associated wrap-around to U16_MAX).
AFAICT, when host fairness is disabled, the decrement and wrap-around
happens as soon as a hash collision occurs (which is not that common in
itself, due to the set-associative hashing). However, in most cases this
is harmless, as the value is only used when host fairness mode is
enabled. So in order to trigger an array overflow, sch_cake has to first
be configured with host fairness disabled, and while running in this
mode, a hash collision has to occur to cause the overflow. Then, the
qdisc has to be reconfigured to enable host fairness, which leads to the
array out-of-bounds because the wrapped-around value is retained and
used as an array index. It seems that syzbot managed to trigger this,
which is quite impressive in its own right.
This patch fixes the issue by introducing the same conditional check on
decrement as is used on increment.
The original bug predates the upstreaming of cake, but the commit listed
in the Fixes tag touched that code, meaning that this patch won't apply
before that. |
| In the Linux kernel, the following vulnerability has been resolved:
ELF: fix kernel.randomize_va_space double read
ELF loader uses "randomize_va_space" twice. It is sysctl and can change
at any moment, so 2 loads could see 2 different values in theory with
unpredictable consequences.
Issue exactly one load for consistent value across one exec. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: the warning dereferencing obj for nbio_v7_4
if ras_manager obj null, don't print NBIO err data |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/amdgpu: Check tbo resource pointer
Validate tbo resource pointer, skip if NULL |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix the waring dereferencing hive
Check the amdgpu_hive_info *hive that maybe is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
sch/netem: fix use after free in netem_dequeue
If netem_dequeue() enqueues packet to inner qdisc and that qdisc
returns __NET_XMIT_STOLEN. The packet is dropped but
qdisc_tree_reduce_backlog() is not called to update the parent's
q.qlen, leading to the similar use-after-free as Commit
e04991a48dbaf382 ("netem: fix return value if duplicate enqueue
fails")
Commands to trigger KASAN UaF:
ip link add type dummy
ip link set lo up
ip link set dummy0 up
tc qdisc add dev lo parent root handle 1: drr
tc filter add dev lo parent 1: basic classid 1:1
tc class add dev lo classid 1:1 drr
tc qdisc add dev lo parent 1:1 handle 2: netem
tc qdisc add dev lo parent 2: handle 3: drr
tc filter add dev lo parent 3: basic classid 3:1 action mirred egress
redirect dev dummy0
tc class add dev lo classid 3:1 drr
ping -c1 -W0.01 localhost # Trigger bug
tc class del dev lo classid 1:1
tc class add dev lo classid 1:1 drr
ping -c1 -W0.01 localhost # UaF |
| In the Linux kernel, the following vulnerability has been resolved:
tcp_bpf: fix return value of tcp_bpf_sendmsg()
When we cork messages in psock->cork, the last message triggers the
flushing will result in sending a sk_msg larger than the current
message size. In this case, in tcp_bpf_send_verdict(), 'copied' becomes
negative at least in the following case:
468 case __SK_DROP:
469 default:
470 sk_msg_free_partial(sk, msg, tosend);
471 sk_msg_apply_bytes(psock, tosend);
472 *copied -= (tosend + delta); // <==== HERE
473 return -EACCES;
Therefore, it could lead to the following BUG with a proper value of
'copied' (thanks to syzbot). We should not use negative 'copied' as a
return value here.
------------[ cut here ]------------
kernel BUG at net/socket.c:733!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 UID: 0 PID: 3265 Comm: syz-executor510 Not tainted 6.11.0-rc3-syzkaller-00060-gd07b43284ab3 #0
Hardware name: linux,dummy-virt (DT)
pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
pc : sock_sendmsg_nosec net/socket.c:733 [inline]
pc : sock_sendmsg_nosec net/socket.c:728 [inline]
pc : __sock_sendmsg+0x5c/0x60 net/socket.c:745
lr : sock_sendmsg_nosec net/socket.c:730 [inline]
lr : __sock_sendmsg+0x54/0x60 net/socket.c:745
sp : ffff800088ea3b30
x29: ffff800088ea3b30 x28: fbf00000062bc900 x27: 0000000000000000
x26: ffff800088ea3bc0 x25: ffff800088ea3bc0 x24: 0000000000000000
x23: f9f00000048dc000 x22: 0000000000000000 x21: ffff800088ea3d90
x20: f9f00000048dc000 x19: ffff800088ea3d90 x18: 0000000000000001
x17: 0000000000000000 x16: 0000000000000000 x15: 000000002002ffaf
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff8000815849c0 x9 : ffff8000815b49c0
x8 : 0000000000000000 x7 : 000000000000003f x6 : 0000000000000000
x5 : 00000000000007e0 x4 : fff07ffffd239000 x3 : fbf00000062bc900
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 00000000fffffdef
Call trace:
sock_sendmsg_nosec net/socket.c:733 [inline]
__sock_sendmsg+0x5c/0x60 net/socket.c:745
____sys_sendmsg+0x274/0x2ac net/socket.c:2597
___sys_sendmsg+0xac/0x100 net/socket.c:2651
__sys_sendmsg+0x84/0xe0 net/socket.c:2680
__do_sys_sendmsg net/socket.c:2689 [inline]
__se_sys_sendmsg net/socket.c:2687 [inline]
__arm64_sys_sendmsg+0x24/0x30 net/socket.c:2687
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x48/0x110 arch/arm64/kernel/syscall.c:49
el0_svc_common.constprop.0+0x40/0xe0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x1c/0x28 arch/arm64/kernel/syscall.c:151
el0_svc+0x34/0xec arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x100/0x12c arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x19c/0x1a0 arch/arm64/kernel/entry.S:598
Code: f9404463 d63f0060 3108441f 54fffe81 (d4210000)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
pci/hotplug/pnv_php: Fix hotplug driver crash on Powernv
The hotplug driver for powerpc (pci/hotplug/pnv_php.c) causes a kernel
crash when we try to hot-unplug/disable the PCIe switch/bridge from
the PHB.
The crash occurs because although the MSI data structure has been
released during disable/hot-unplug path and it has been assigned
with NULL, still during unregistration the code was again trying to
explicitly disable the MSI which causes the NULL pointer dereference and
kernel crash.
The patch fixes the check during unregistration path to prevent invoking
pci_disable_msi/msix() since its data structure is already freed. |