| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: ensure the allocated report buffer can contain the reserved report ID
When the report ID is not used, the low level transport drivers expect
the first byte to be 0. However, currently the allocated buffer not
account for that extra byte, meaning that instead of having 8 guaranteed
bytes for implement to be working, we only have 7. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: make fallback action and fallback decision atomic
Syzkaller reported the following splat:
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 __mptcp_do_fallback net/mptcp/protocol.h:1223 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 mptcp_do_fallback net/mptcp/protocol.h:1244 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 check_fully_established net/mptcp/options.c:982 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 mptcp_incoming_options+0x21a8/0x2510 net/mptcp/options.c:1153
Modules linked in:
CPU: 1 UID: 0 PID: 7704 Comm: syz.3.1419 Not tainted 6.16.0-rc3-gbd5ce2324dba #20 PREEMPT(voluntary)
Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:__mptcp_do_fallback net/mptcp/protocol.h:1223 [inline]
RIP: 0010:mptcp_do_fallback net/mptcp/protocol.h:1244 [inline]
RIP: 0010:check_fully_established net/mptcp/options.c:982 [inline]
RIP: 0010:mptcp_incoming_options+0x21a8/0x2510 net/mptcp/options.c:1153
Code: 24 18 e8 bb 2a 00 fd e9 1b df ff ff e8 b1 21 0f 00 e8 ec 5f c4 fc 44 0f b7 ac 24 b0 00 00 00 e9 54 f1 ff ff e8 d9 5f c4 fc 90 <0f> 0b 90 e9 b8 f4 ff ff e8 8b 2a 00 fd e9 8d e6 ff ff e8 81 2a 00
RSP: 0018:ffff8880a3f08448 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8880180a8000 RCX: ffffffff84afcf45
RDX: ffff888090223700 RSI: ffffffff84afdaa7 RDI: 0000000000000001
RBP: ffff888017955780 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff8880180a8910 R14: ffff8880a3e9d058 R15: 0000000000000000
FS: 00005555791b8500(0000) GS:ffff88811c495000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000110c2800b7 CR3: 0000000058e44000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
tcp_reset+0x26f/0x2b0 net/ipv4/tcp_input.c:4432
tcp_validate_incoming+0x1057/0x1b60 net/ipv4/tcp_input.c:5975
tcp_rcv_established+0x5b5/0x21f0 net/ipv4/tcp_input.c:6166
tcp_v4_do_rcv+0x5dc/0xa70 net/ipv4/tcp_ipv4.c:1925
tcp_v4_rcv+0x3473/0x44a0 net/ipv4/tcp_ipv4.c:2363
ip_protocol_deliver_rcu+0xba/0x480 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2f1/0x500 net/ipv4/ip_input.c:233
NF_HOOK include/linux/netfilter.h:317 [inline]
NF_HOOK include/linux/netfilter.h:311 [inline]
ip_local_deliver+0x1be/0x560 net/ipv4/ip_input.c:254
dst_input include/net/dst.h:469 [inline]
ip_rcv_finish net/ipv4/ip_input.c:447 [inline]
NF_HOOK include/linux/netfilter.h:317 [inline]
NF_HOOK include/linux/netfilter.h:311 [inline]
ip_rcv+0x514/0x810 net/ipv4/ip_input.c:567
__netif_receive_skb_one_core+0x197/0x1e0 net/core/dev.c:5975
__netif_receive_skb+0x1f/0x120 net/core/dev.c:6088
process_backlog+0x301/0x1360 net/core/dev.c:6440
__napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7453
napi_poll net/core/dev.c:7517 [inline]
net_rx_action+0xb44/0x1010 net/core/dev.c:7644
handle_softirqs+0x1d0/0x770 kernel/softirq.c:579
do_softirq+0x3f/0x90 kernel/softirq.c:480
</IRQ>
<TASK>
__local_bh_enable_ip+0xed/0x110 kernel/softirq.c:407
local_bh_enable include/linux/bottom_half.h:33 [inline]
inet_csk_listen_stop+0x2c5/0x1070 net/ipv4/inet_connection_sock.c:1524
mptcp_check_listen_stop.part.0+0x1cc/0x220 net/mptcp/protocol.c:2985
mptcp_check_listen_stop net/mptcp/mib.h:118 [inline]
__mptcp_close+0x9b9/0xbd0 net/mptcp/protocol.c:3000
mptcp_close+0x2f/0x140 net/mptcp/protocol.c:3066
inet_release+0xed/0x200 net/ipv4/af_inet.c:435
inet6_release+0x4f/0x70 net/ipv6/af_inet6.c:487
__sock_release+0xb3/0x270 net/socket.c:649
sock_close+0x1c/0x30 net/socket.c:1439
__fput+0x402/0xb70 fs/file_table.c:465
task_work_run+0x150/0x240 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xd4
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in crypt_message when using async crypto
The CVE-2024-50047 fix removed asynchronous crypto handling from
crypt_message(), assuming all crypto operations are synchronous.
However, when hardware crypto accelerators are used, this can cause
use-after-free crashes:
crypt_message()
// Allocate the creq buffer containing the req
creq = smb2_get_aead_req(..., &req);
// Async encryption returns -EINPROGRESS immediately
rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
// Free creq while async operation is still in progress
kvfree_sensitive(creq, ...);
Hardware crypto modules often implement async AEAD operations for
performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS,
the operation completes asynchronously. Without crypto_wait_req(),
the function immediately frees the request buffer, leading to crashes
when the driver later accesses the freed memory.
This results in a use-after-free condition when the hardware crypto
driver later accesses the freed request structure, leading to kernel
crashes with NULL pointer dereferences.
The issue occurs because crypto_alloc_aead() with mask=0 doesn't
guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in
the mask, async implementations can be selected.
Fix by restoring the async crypto handling:
- DECLARE_CRYPTO_WAIT(wait) for completion tracking
- aead_request_set_callback() for async completion notification
- crypto_wait_req() to wait for operation completion
This ensures the request buffer isn't freed until the crypto operation
completes, whether synchronous or asynchronous, while preserving the
CVE-2024-50047 fix. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: lpc-snoop: Don't disable channels that aren't enabled
Mitigate e.g. the following:
# echo 1e789080.lpc-snoop > /sys/bus/platform/drivers/aspeed-lpc-snoop/unbind
...
[ 120.363594] Unable to handle kernel NULL pointer dereference at virtual address 00000004 when write
[ 120.373866] [00000004] *pgd=00000000
[ 120.377910] Internal error: Oops: 805 [#1] SMP ARM
[ 120.383306] CPU: 1 UID: 0 PID: 315 Comm: sh Not tainted 6.15.0-rc1-00009-g926217bc7d7d-dirty #20 NONE
...
[ 120.679543] Call trace:
[ 120.679559] misc_deregister from aspeed_lpc_snoop_remove+0x84/0xac
[ 120.692462] aspeed_lpc_snoop_remove from platform_remove+0x28/0x38
[ 120.700996] platform_remove from device_release_driver_internal+0x188/0x200
... |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: xt_nfacct: don't assume acct name is null-terminated
BUG: KASAN: slab-out-of-bounds in .. lib/vsprintf.c:721
Read of size 1 at addr ffff88801eac95c8 by task syz-executor183/5851
[..]
string+0x231/0x2b0 lib/vsprintf.c:721
vsnprintf+0x739/0xf00 lib/vsprintf.c:2874
[..]
nfacct_mt_checkentry+0xd2/0xe0 net/netfilter/xt_nfacct.c:41
xt_check_match+0x3d1/0xab0 net/netfilter/x_tables.c:523
nfnl_acct_find_get() handles non-null input, but the error
printk relied on its presence. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: fxls8962af: Fix use after free in fxls8962af_fifo_flush
fxls8962af_fifo_flush() uses indio_dev->active_scan_mask (with
iio_for_each_active_channel()) without making sure the indio_dev
stays in buffer mode.
There is a race if indio_dev exits buffer mode in the middle of the
interrupt that flushes the fifo. Fix this by calling
synchronize_irq() to ensure that no interrupt is currently running when
disabling buffer mode.
Unable to handle kernel NULL pointer dereference at virtual address 00000000 when read
[...]
_find_first_bit_le from fxls8962af_fifo_flush+0x17c/0x290
fxls8962af_fifo_flush from fxls8962af_interrupt+0x80/0x178
fxls8962af_interrupt from irq_thread_fn+0x1c/0x7c
irq_thread_fn from irq_thread+0x110/0x1f4
irq_thread from kthread+0xe0/0xfc
kthread from ret_from_fork+0x14/0x2c |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das16m1: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* only irqs 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, and 15 are valid */
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das6402: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* IRQs 2,3,5,6,7, 10,11,15 are valid for "enhanced" mode */
if ((1 << it->options[1]) & 0x8cec) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fail COMEDI_INSNLIST ioctl if n_insns is too large
The handling of the `COMEDI_INSNLIST` ioctl allocates a kernel buffer to
hold the array of `struct comedi_insn`, getting the length from the
`n_insns` member of the `struct comedi_insnlist` supplied by the user.
The allocation will fail with a WARNING and a stack dump if it is too
large.
Avoid that by failing with an `-EINVAL` error if the supplied `n_insns`
value is unreasonable.
Define the limit on the `n_insns` value in the `MAX_INSNS` macro. Set
this to the same value as `MAX_SAMPLES` (65536), which is the maximum
allowed sum of the values of the member `n` in the array of `struct
comedi_insn`, and sensible comedi instructions will have an `n` of at
least 1. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: reject TDLS operations when station is not associated
syzbot triggered a WARN in ieee80211_tdls_oper() by sending
NL80211_TDLS_ENABLE_LINK immediately after NL80211_CMD_CONNECT,
before association completed and without prior TDLS setup.
This left internal state like sdata->u.mgd.tdls_peer uninitialized,
leading to a WARN_ON() in code paths that assumed it was valid.
Reject the operation early if not in station mode or not associated. |
| Missing Authorization vulnerability in Kraft Plugins Demo Importer Plus demo-importer-plus allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Demo Importer Plus: from n/a through <= 2.0.8. |
| A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition. |
| A race condition was addressed with improved state handling. This issue is fixed in watchOS 26.2, Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2, tvOS 26.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| A buffer overflow issue was addressed with improved memory handling. This issue is fixed in Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| JIT miscompilation in the JavaScript Engine: JIT component. This vulnerability affects Firefox < 146, Firefox ESR < 140.6, Thunderbird < 146, and Thunderbird < 140.6. |
| LINE client for iOS prior to 15.19 allows UI spoofing due to inconsistencies between the navigation state and the in-app browser's user interface, which could create confusion about the trust context of displayed pages or interactive elements under specific conditions. |
| LINE client for iOS prior to 15.4 allows man-in-the-middle attacks due to improper SSL/TLS certificate validation in an integrated financial SDK. The SDK interfered with the application's network processing, causing server certificate verification to be disabled for a significant portion of network traffic, which could allow a network-adjacent attacker to intercept or modify encrypted communications. |
| A flaw was found in WebKitGTK. This vulnerability allows remote, user-assisted information disclosure that can reveal any file the user is permitted to read via abusing the file drag-and-drop mechanism where WebKitGTK does not verify that drag operations originate from outside the browser. |
| When loading a plist file, the plistlib module reads data in size specified by the file itself, meaning a malicious file can cause OOM and DoS issues |