| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: Fix UAF when resolving a clash
KASAN reports the following UAF:
BUG: KASAN: slab-use-after-free in tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct]
Read of size 1 at addr ffff888c07603600 by task handler130/6469
Call Trace:
<IRQ>
dump_stack_lvl+0x48/0x70
print_address_description.constprop.0+0x33/0x3d0
print_report+0xc0/0x2b0
kasan_report+0xd0/0x120
__asan_load1+0x6c/0x80
tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct]
tcf_ct_act+0x886/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
__irq_exit_rcu+0x82/0xc0
irq_exit_rcu+0xe/0x20
common_interrupt+0xa1/0xb0
</IRQ>
<TASK>
asm_common_interrupt+0x27/0x40
Allocated by task 6469:
kasan_save_stack+0x38/0x70
kasan_set_track+0x25/0x40
kasan_save_alloc_info+0x1e/0x40
__kasan_krealloc+0x133/0x190
krealloc+0xaa/0x130
nf_ct_ext_add+0xed/0x230 [nf_conntrack]
tcf_ct_act+0x1095/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
Freed by task 6469:
kasan_save_stack+0x38/0x70
kasan_set_track+0x25/0x40
kasan_save_free_info+0x2b/0x60
____kasan_slab_free+0x180/0x1f0
__kasan_slab_free+0x12/0x30
slab_free_freelist_hook+0xd2/0x1a0
__kmem_cache_free+0x1a2/0x2f0
kfree+0x78/0x120
nf_conntrack_free+0x74/0x130 [nf_conntrack]
nf_ct_destroy+0xb2/0x140 [nf_conntrack]
__nf_ct_resolve_clash+0x529/0x5d0 [nf_conntrack]
nf_ct_resolve_clash+0xf6/0x490 [nf_conntrack]
__nf_conntrack_confirm+0x2c6/0x770 [nf_conntrack]
tcf_ct_act+0x12ad/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
The ct may be dropped if a clash has been resolved but is still passed to
the tcf_ct_flow_table_process_conn function for further usage. This issue
can be fixed by retrieving ct from skb again after confirming conntrack. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix overflow checking of wmfw header
Fix the checking that firmware file buffer is large enough for the
wmfw header, to prevent overrunning the buffer.
The original code tested that the firmware data buffer contained
enough bytes for the sums of the size of the structs
wmfw_header + wmfw_adsp1_sizes + wmfw_footer
But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and
Halo Core the equivalent struct is wmfw_adsp2_sizes, which is
4 bytes longer. So the length check didn't guarantee that there
are enough bytes in the firmware buffer for a header with
wmfw_adsp2_sizes.
This patch splits the length check into three separate parts. Each
of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked
separately before they are used. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Prevent buffer overrun when processing V2 alg headers
Check that all fields of a V2 algorithm header fit into the available
firmware data buffer.
The wmfw V2 format introduced variable-length strings in the algorithm
block header. This means the overall header length is variable, and the
position of most fields varies depending on the length of the string
fields. Each field must be checked to ensure that it does not overflow
the firmware data buffer.
As this ia bugfix patch, the fixes avoid making any significant change to
the existing code. This makes it easier to review and less likely to
introduce new bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ks8851: Fix deadlock with the SPI chip variant
When SMP is enabled and spinlocks are actually functional then there is
a deadlock with the 'statelock' spinlock between ks8851_start_xmit_spi
and ks8851_irq:
watchdog: BUG: soft lockup - CPU#0 stuck for 27s!
call trace:
queued_spin_lock_slowpath+0x100/0x284
do_raw_spin_lock+0x34/0x44
ks8851_start_xmit_spi+0x30/0xb8
ks8851_start_xmit+0x14/0x20
netdev_start_xmit+0x40/0x6c
dev_hard_start_xmit+0x6c/0xbc
sch_direct_xmit+0xa4/0x22c
__qdisc_run+0x138/0x3fc
qdisc_run+0x24/0x3c
net_tx_action+0xf8/0x130
handle_softirqs+0x1ac/0x1f0
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x3c/0x58
do_softirq_own_stack+0x1c/0x28
__irq_exit_rcu+0x54/0x9c
irq_exit_rcu+0x10/0x1c
el1_interrupt+0x38/0x50
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x64/0x68
__netif_schedule+0x6c/0x80
netif_tx_wake_queue+0x38/0x48
ks8851_irq+0xb8/0x2c8
irq_thread_fn+0x2c/0x74
irq_thread+0x10c/0x1b0
kthread+0xc8/0xd8
ret_from_fork+0x10/0x20
This issue has not been identified earlier because tests were done on
a device with SMP disabled and so spinlocks were actually NOPs.
Now use spin_(un)lock_bh for TX queue related locking to avoid execution
of softirq work synchronously that would lead to a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix duplicate endpoint bug by clearing reserved bits in the descriptor
Syzbot has identified a bug in usbcore (see the Closes: tag below)
caused by our assumption that the reserved bits in an endpoint
descriptor's bEndpointAddress field will always be 0. As a result of
the bug, the endpoint_is_duplicate() routine in config.c (and possibly
other routines as well) may believe that two descriptors are for
distinct endpoints, even though they have the same direction and
endpoint number. This can lead to confusion, including the bug
identified by syzbot (two descriptors with matching endpoint numbers
and directions, where one was interrupt and the other was bulk).
To fix the bug, we will clear the reserved bits in bEndpointAddress
when we parse the descriptor. (Note that both the USB-2.0 and USB-3.1
specs say these bits are "Reserved, reset to zero".) This requires us
to make a copy of the descriptor earlier in usb_parse_endpoint() and
use the copy instead of the original when checking for duplicates. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix kernel bug on rename operation of broken directory
Syzbot reported that in rename directory operation on broken directory on
nilfs2, __block_write_begin_int() called to prepare block write may fail
BUG_ON check for access exceeding the folio/page size.
This is because nilfs_dotdot(), which gets parent directory reference
entry ("..") of the directory to be moved or renamed, does not check
consistency enough, and may return location exceeding folio/page size for
broken directories.
Fix this issue by checking required directory entries ("." and "..") in
the first chunk of the directory in nilfs_dotdot(). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: discard write access to the directory open
may_open() does not allow a directory to be opened with the write access.
However, some writing flags set by client result in adding write access
on server, making ksmbd incompatible with FUSE file system. Simply, let's
discard the write access when opening a directory.
list_add corruption. next is NULL.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:26!
pc : __list_add_valid+0x88/0xbc
lr : __list_add_valid+0x88/0xbc
Call trace:
__list_add_valid+0x88/0xbc
fuse_finish_open+0x11c/0x170
fuse_open_common+0x284/0x5e8
fuse_dir_open+0x14/0x24
do_dentry_open+0x2a4/0x4e0
dentry_open+0x50/0x80
smb2_open+0xbe4/0x15a4
handle_ksmbd_work+0x478/0x5ec
process_one_work+0x1b4/0x448
worker_thread+0x25c/0x430
kthread+0x104/0x1d4
ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: toshiba_acpi: Fix array out-of-bounds access
In order to use toshiba_dmi_quirks[] together with the standard DMI
matching functions, it must be terminated by a empty entry.
Since this entry is missing, an array out-of-bounds access occurs
every time the quirk list is processed.
Fix this by adding the terminating empty entry. |
| In the Linux kernel, the following vulnerability has been resolved:
Fix userfaultfd_api to return EINVAL as expected
Currently if we request a feature that is not set in the Kernel config we
fail silently and return all the available features. However, the man
page indicates we should return an EINVAL.
We need to fix this issue since we can end up with a Kernel warning should
a program request the feature UFFD_FEATURE_WP_UNPOPULATED on a kernel with
the config not set with this feature.
[ 200.812896] WARNING: CPU: 91 PID: 13634 at mm/memory.c:1660 zap_pte_range+0x43d/0x660
[ 200.820738] Modules linked in:
[ 200.869387] CPU: 91 PID: 13634 Comm: userfaultfd Kdump: loaded Not tainted 6.9.0-rc5+ #8
[ 200.877477] Hardware name: Dell Inc. PowerEdge R6525/0N7YGH, BIOS 2.7.3 03/30/2022
[ 200.885052] RIP: 0010:zap_pte_range+0x43d/0x660 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix signedness bug in sdma_v4_0_process_trap_irq()
The "instance" variable needs to be signed for the error handling to work. |
| In the Linux kernel, the following vulnerability has been resolved:
filelock: Fix fcntl/close race recovery compat path
When I wrote commit 3cad1bc01041 ("filelock: Remove locks reliably when
fcntl/close race is detected"), I missed that there are two copies of the
code I was patching: The normal version, and the version for 64-bit offsets
on 32-bit kernels.
Thanks to Greg KH for stumbling over this while doing the stable
backport...
Apply exactly the same fix to the compat path for 32-bit kernels. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate ff offset
This adds sanity checks for ff offset. There is a check
on rt->first_free at first, but walking through by ff
without any check. If the second ff is a large offset.
We may encounter an out-of-bound read. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: don't walk off the end of ealist
Add a check before visiting the members of ea to
make sure each ea stays within the ealist. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: strict bound check before memcmp in ocfs2_xattr_find_entry()
xattr in ocfs2 maybe 'non-indexed', which saved with additional space
requested. It's better to check if the memory is out of bound before
memcmp, although this possibility mainly comes from crafted poisonous
images. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: add bounds checking to ocfs2_check_dir_entry()
This adds sanity checks for ocfs2_dir_entry to make sure all members of
ocfs2_dir_entry don't stray beyond valid memory region. |
| In the Linux kernel, the following vulnerability has been resolved:
filelock: Remove locks reliably when fcntl/close race is detected
When fcntl_setlk() races with close(), it removes the created lock with
do_lock_file_wait().
However, LSMs can allow the first do_lock_file_wait() that created the lock
while denying the second do_lock_file_wait() that tries to remove the lock.
Separately, posix_lock_file() could also fail to
remove a lock due to GFP_KERNEL allocation failure (when splitting a range
in the middle).
After the bug has been triggered, use-after-free reads will occur in
lock_get_status() when userspace reads /proc/locks. This can likely be used
to read arbitrary kernel memory, but can't corrupt kernel memory.
Fix it by calling locks_remove_posix() instead, which is designed to
reliably get rid of POSIX locks associated with the given file and
files_struct and is also used by filp_flush(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: don't allow mapping the MMIO HDP page with large pages
We don't get the right offset in that case. The GPU has
an unused 4K area of the register BAR space into which you can
remap registers. We remap the HDP flush registers into this
space to allow userspace (CPU or GPU) to flush the HDP when it
updates VRAM. However, on systems with >4K pages, we end up
exposing PAGE_SIZE of MMIO space. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overrunning reservations in ringbuf
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that "owns" the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk's
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A's header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We've tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: avoid too many retransmit packets
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has 'expired'.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk->icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk->icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 ("net: tcp:
fix unexcepted socket die when snd_wnd is 0"), the issue
would last 2 minutes instead of 4. |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix a memory leak in nr_heartbeat_expiry()
syzbot reported a memory leak in nr_create() [0].
Commit 409db27e3a2e ("netrom: Fix use-after-free of a listening socket.")
added sock_hold() to the nr_heartbeat_expiry() function, where
a) a socket has a SOCK_DESTROY flag or
b) a listening socket has a SOCK_DEAD flag.
But in the case "a," when the SOCK_DESTROY flag is set, the file descriptor
has already been closed and the nr_release() function has been called.
So it makes no sense to hold the reference count because no one will
call another nr_destroy_socket() and put it as in the case "b."
nr_connect
nr_establish_data_link
nr_start_heartbeat
nr_release
switch (nr->state)
case NR_STATE_3
nr->state = NR_STATE_2
sock_set_flag(sk, SOCK_DESTROY);
nr_rx_frame
nr_process_rx_frame
switch (nr->state)
case NR_STATE_2
nr_state2_machine()
nr_disconnect()
nr_sk(sk)->state = NR_STATE_0
sock_set_flag(sk, SOCK_DEAD)
nr_heartbeat_expiry
switch (nr->state)
case NR_STATE_0
if (sock_flag(sk, SOCK_DESTROY) ||
(sk->sk_state == TCP_LISTEN
&& sock_flag(sk, SOCK_DEAD)))
sock_hold() // ( !!! )
nr_destroy_socket()
To fix the memory leak, let's call sock_hold() only for a listening socket.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller.
[0]: https://syzkaller.appspot.com/bug?extid=d327a1f3b12e1e206c16 |