Search Results (5982 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-3773 4 Debian, Fedoraproject, Linux and 1 more 4 Debian Linux, Fedora, Linux Kernel and 1 more 2025-11-14 5.5 Medium
A flaw was found in the Linux kernel’s IP framework for transforming packets (XFRM subsystem). This issue may allow a malicious user with CAP_NET_ADMIN privileges to cause a 4 byte out-of-bounds read of XFRMA_MTIMER_THRESH when parsing netlink attributes, leading to potential leakage of sensitive heap data to userspace.
CVE-2023-3640 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-14 7 High
A possible unauthorized memory access flaw was found in the Linux kernel's cpu_entry_area mapping of X86 CPU data to memory, where a user may guess the location of exception stacks or other important data. Based on the previous CVE-2023-0597, the 'Randomize per-cpu entry area' feature was implemented in /arch/x86/mm/cpu_entry_area.c, which works through the init_cea_offsets() function when KASLR is enabled. However, despite this feature, there is still a risk of per-cpu entry area leaks. This issue could allow a local user to gain access to some important data with memory in an expected location and potentially escalate their privileges on the system.
CVE-2022-49969 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-13 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: clear optc underflow before turn off odm clock [Why] After ODM clock off, optc underflow bit will be kept there always and clear not work. We need to clear that before clock off. [How] Clear that if have when clock off.
CVE-2022-50020 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid resizing to a partial cluster size This patch avoids an attempt to resize the filesystem to an unaligned cluster boundary. An online resize to a size that is not integral to cluster size results in the last iteration attempting to grow the fs by a negative amount, which trips a BUG_ON and leaves the fs with a corrupted in-memory superblock.
CVE-2022-50029 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-13 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: qcom: ipq8074: dont disable gcc_sleep_clk_src Once the usb sleep clocks are disabled, clock framework is trying to disable the sleep clock source also. However, it seems that it cannot be disabled and trying to do so produces: [ 245.436390] ------------[ cut here ]------------ [ 245.441233] gcc_sleep_clk_src status stuck at 'on' [ 245.441254] WARNING: CPU: 2 PID: 223 at clk_branch_wait+0x130/0x140 [ 245.450435] Modules linked in: xhci_plat_hcd xhci_hcd dwc3 dwc3_qcom leds_gpio [ 245.456601] CPU: 2 PID: 223 Comm: sh Not tainted 5.18.0-rc4 #215 [ 245.463889] Hardware name: Xiaomi AX9000 (DT) [ 245.470050] pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 245.474307] pc : clk_branch_wait+0x130/0x140 [ 245.481073] lr : clk_branch_wait+0x130/0x140 [ 245.485588] sp : ffffffc009f2bad0 [ 245.489838] x29: ffffffc009f2bad0 x28: ffffff8003e6c800 x27: 0000000000000000 [ 245.493057] x26: 0000000000000000 x25: 0000000000000000 x24: ffffff800226ef20 [ 245.500175] x23: ffffffc0089ff550 x22: 0000000000000000 x21: ffffffc008476ad0 [ 245.507294] x20: 0000000000000000 x19: ffffffc00965ac70 x18: fffffffffffc51a7 [ 245.514413] x17: 68702e3030303837 x16: 3a6d726f6674616c x15: ffffffc089f2b777 [ 245.521531] x14: ffffffc0095c9d18 x13: 0000000000000129 x12: 0000000000000129 [ 245.528649] x11: 00000000ffffffea x10: ffffffc009621d18 x9 : 0000000000000001 [ 245.535767] x8 : 0000000000000001 x7 : 0000000000017fe8 x6 : 0000000000000001 [ 245.542885] x5 : ffffff803fdca6d8 x4 : 0000000000000000 x3 : 0000000000000027 [ 245.550002] x2 : 0000000000000027 x1 : 0000000000000023 x0 : 0000000000000026 [ 245.557122] Call trace: [ 245.564229] clk_branch_wait+0x130/0x140 [ 245.566490] clk_branch2_disable+0x2c/0x40 [ 245.570656] clk_core_disable+0x60/0xb0 [ 245.574561] clk_core_disable+0x68/0xb0 [ 245.578293] clk_disable+0x30/0x50 [ 245.582113] dwc3_qcom_remove+0x60/0xc0 [dwc3_qcom] [ 245.585588] platform_remove+0x28/0x60 [ 245.590361] device_remove+0x4c/0x80 [ 245.594179] device_release_driver_internal+0x1dc/0x230 [ 245.597914] device_driver_detach+0x18/0x30 [ 245.602861] unbind_store+0xec/0x110 [ 245.607027] drv_attr_store+0x24/0x40 [ 245.610847] sysfs_kf_write+0x44/0x60 [ 245.614405] kernfs_fop_write_iter+0x128/0x1c0 [ 245.618052] new_sync_write+0xc0/0x130 [ 245.622391] vfs_write+0x1d4/0x2a0 [ 245.626123] ksys_write+0x58/0xe0 [ 245.629508] __arm64_sys_write+0x1c/0x30 [ 245.632895] invoke_syscall.constprop.0+0x5c/0x110 [ 245.636890] do_el0_svc+0xa0/0x150 [ 245.641488] el0_svc+0x18/0x60 [ 245.644872] el0t_64_sync_handler+0xa4/0x130 [ 245.647914] el0t_64_sync+0x174/0x178 [ 245.652340] ---[ end trace 0000000000000000 ]--- So, add CLK_IS_CRITICAL flag to the clock so that the kernel won't try to disable the sleep clock.
CVE-2022-50035 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-13 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix use-after-free on amdgpu_bo_list mutex If amdgpu_cs_vm_handling returns r != 0, then it will unlock the bo_list_mutex inside the function amdgpu_cs_vm_handling and again on amdgpu_cs_parser_fini. This problem results in the following use-after-free problem: [ 220.280990] ------------[ cut here ]------------ [ 220.281000] refcount_t: underflow; use-after-free. [ 220.281019] WARNING: CPU: 1 PID: 3746 at lib/refcount.c:28 refcount_warn_saturate+0xba/0x110 [ 220.281029] ------------[ cut here ]------------ [ 220.281415] CPU: 1 PID: 3746 Comm: chrome:cs0 Tainted: G W L ------- --- 5.20.0-0.rc0.20220812git7ebfc85e2cd7.10.fc38.x86_64 #1 [ 220.281421] Hardware name: System manufacturer System Product Name/ROG STRIX X570-I GAMING, BIOS 4403 04/27/2022 [ 220.281426] RIP: 0010:refcount_warn_saturate+0xba/0x110 [ 220.281431] Code: 01 01 e8 79 4a 6f 00 0f 0b e9 42 47 a5 00 80 3d de 7e be 01 00 75 85 48 c7 c7 f8 98 8e 98 c6 05 ce 7e be 01 01 e8 56 4a 6f 00 <0f> 0b e9 1f 47 a5 00 80 3d b9 7e be 01 00 0f 85 5e ff ff ff 48 c7 [ 220.281437] RSP: 0018:ffffb4b0d18d7a80 EFLAGS: 00010282 [ 220.281443] RAX: 0000000000000026 RBX: 0000000000000003 RCX: 0000000000000000 [ 220.281448] RDX: 0000000000000001 RSI: ffffffff988d06dc RDI: 00000000ffffffff [ 220.281452] RBP: 00000000ffffffff R08: 0000000000000000 R09: ffffb4b0d18d7930 [ 220.281457] R10: 0000000000000003 R11: ffffa0672e2fffe8 R12: ffffa058ca360400 [ 220.281461] R13: ffffa05846c50a18 R14: 00000000fffffe00 R15: 0000000000000003 [ 220.281465] FS: 00007f82683e06c0(0000) GS:ffffa066e2e00000(0000) knlGS:0000000000000000 [ 220.281470] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 220.281475] CR2: 00003590005cc000 CR3: 00000001fca46000 CR4: 0000000000350ee0 [ 220.281480] Call Trace: [ 220.281485] <TASK> [ 220.281490] amdgpu_cs_ioctl+0x4e2/0x2070 [amdgpu] [ 220.281806] ? amdgpu_cs_find_mapping+0xe0/0xe0 [amdgpu] [ 220.282028] drm_ioctl_kernel+0xa4/0x150 [ 220.282043] drm_ioctl+0x21f/0x420 [ 220.282053] ? amdgpu_cs_find_mapping+0xe0/0xe0 [amdgpu] [ 220.282275] ? lock_release+0x14f/0x460 [ 220.282282] ? _raw_spin_unlock_irqrestore+0x30/0x60 [ 220.282290] ? _raw_spin_unlock_irqrestore+0x30/0x60 [ 220.282297] ? lockdep_hardirqs_on+0x7d/0x100 [ 220.282305] ? _raw_spin_unlock_irqrestore+0x40/0x60 [ 220.282317] amdgpu_drm_ioctl+0x4a/0x80 [amdgpu] [ 220.282534] __x64_sys_ioctl+0x90/0xd0 [ 220.282545] do_syscall_64+0x5b/0x80 [ 220.282551] ? futex_wake+0x6c/0x150 [ 220.282568] ? lock_is_held_type+0xe8/0x140 [ 220.282580] ? do_syscall_64+0x67/0x80 [ 220.282585] ? lockdep_hardirqs_on+0x7d/0x100 [ 220.282592] ? do_syscall_64+0x67/0x80 [ 220.282597] ? do_syscall_64+0x67/0x80 [ 220.282602] ? lockdep_hardirqs_on+0x7d/0x100 [ 220.282609] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 220.282616] RIP: 0033:0x7f8282a4f8bf [ 220.282639] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff ff 77 18 48 8b 44 24 18 64 48 2b 04 25 28 00 00 [ 220.282644] RSP: 002b:00007f82683df410 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [ 220.282651] RAX: ffffffffffffffda RBX: 00007f82683df588 RCX: 00007f8282a4f8bf [ 220.282655] RDX: 00007f82683df4d0 RSI: 00000000c0186444 RDI: 0000000000000018 [ 220.282659] RBP: 00007f82683df4d0 R08: 00007f82683df5e0 R09: 00007f82683df4b0 [ 220.282663] R10: 00001d04000a0600 R11: 0000000000000246 R12: 00000000c0186444 [ 220.282667] R13: 0000000000000018 R14: 00007f82683df588 R15: 0000000000000003 [ 220.282689] </TASK> [ 220.282693] irq event stamp: 6232311 [ 220.282697] hardirqs last enabled at (6232319): [<ffffffff9718cd7e>] __up_console_sem+0x5e/0x70 [ 220.282704] hardirqs last disabled at (6232326): [<ffffffff9718cd63>] __up_console_sem+0x43/0x70 [ 220.282709] softirqs last enabled at (6232072): [<ffffffff970ff669>] __irq_exit_rcu+0xf9/0x170 [ 220.282716] softirqs last disabled at (6232061): [<ffffffff97 ---truncated---
CVE-2022-50044 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-13 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: start MHI channel after endpoit creation MHI channel may generates event/interrupt right after enabling. It may leads to 2 race conditions issues. 1) Such event may be dropped by qcom_mhi_qrtr_dl_callback() at check: if (!qdev || mhi_res->transaction_status) return; Because dev_set_drvdata(&mhi_dev->dev, qdev) may be not performed at this moment. In this situation qrtr-ns will be unable to enumerate services in device. --------------------------------------------------------------- 2) Such event may come at the moment after dev_set_drvdata() and before qrtr_endpoint_register(). In this case kernel will panic with accessing wrong pointer at qcom_mhi_qrtr_dl_callback(): rc = qrtr_endpoint_post(&qdev->ep, mhi_res->buf_addr, mhi_res->bytes_xferd); Because endpoint is not created yet. -------------------------------------------------------------- So move mhi_prepare_for_transfer_autoqueue after endpoint creation to fix it.
CVE-2023-53083 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: don't replace page in rq_pages if it's a continuation of last page The splice read calls nfsd_splice_actor to put the pages containing file data into the svc_rqst->rq_pages array. It's possible however to get a splice result that only has a partial page at the end, if (e.g.) the filesystem hands back a short read that doesn't cover the whole page. nfsd_splice_actor will plop the partial page into its rq_pages array and return. Then later, when nfsd_splice_actor is called again, the remainder of the page may end up being filled out. At this point, nfsd_splice_actor will put the page into the array _again_ corrupting the reply. If this is done enough times, rq_next_page will overrun the array and corrupt the trailing fields -- the rq_respages and rq_next_page pointers themselves. If we've already added the page to the array in the last pass, don't add it to the array a second time when dealing with a splice continuation. This was originally handled properly in nfsd_splice_actor, but commit 91e23b1c3982 ("NFSD: Clean up nfsd_splice_actor()") removed the check for it.
CVE-2023-53097 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.
CVE-2023-53068 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: usb: lan78xx: Limit packet length to skb->len Packet length retrieved from descriptor may be larger than the actual socket buffer length. In such case the cloned skb passed up the network stack will leak kernel memory contents. Additionally prevent integer underflow when size is less than ETH_FCS_LEN.
CVE-2023-53070 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPI: PPTT: Fix to avoid sleep in the atomic context when PPTT is absent Commit 0c80f9e165f8 ("ACPI: PPTT: Leave the table mapped for the runtime usage") enabled to map PPTT once on the first invocation of acpi_get_pptt() and never unmapped the same allowing it to be used at runtime with out the hassle of mapping and unmapping the table. This was needed to fetch LLC information from the PPTT in the cpuhotplug path which is executed in the atomic context as the acpi_get_table() might sleep waiting for a mutex. However it missed to handle the case when there is no PPTT on the system which results in acpi_get_pptt() being called from all the secondary CPUs attempting to fetch the LLC information in the atomic context without knowing the absence of PPTT resulting in the splat like below: | BUG: sleeping function called from invalid context at kernel/locking/semaphore.c:164 | in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1 | preempt_count: 1, expected: 0 | RCU nest depth: 0, expected: 0 | no locks held by swapper/1/0. | irq event stamp: 0 | hardirqs last enabled at (0): 0x0 | hardirqs last disabled at (0): copy_process+0x61c/0x1b40 | softirqs last enabled at (0): copy_process+0x61c/0x1b40 | softirqs last disabled at (0): 0x0 | CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.3.0-rc1 #1 | Call trace: | dump_backtrace+0xac/0x138 | show_stack+0x30/0x48 | dump_stack_lvl+0x60/0xb0 | dump_stack+0x18/0x28 | __might_resched+0x160/0x270 | __might_sleep+0x58/0xb0 | down_timeout+0x34/0x98 | acpi_os_wait_semaphore+0x7c/0xc0 | acpi_ut_acquire_mutex+0x58/0x108 | acpi_get_table+0x40/0xe8 | acpi_get_pptt+0x48/0xa0 | acpi_get_cache_info+0x38/0x140 | init_cache_level+0xf4/0x118 | detect_cache_attributes+0x2e4/0x640 | update_siblings_masks+0x3c/0x330 | store_cpu_topology+0x88/0xf0 | secondary_start_kernel+0xd0/0x168 | __secondary_switched+0xb8/0xc0 Update acpi_get_pptt() to consider the fact that PPTT is once checked and is not available on the system and return NULL avoiding any attempts to fetch PPTT and thereby avoiding any possible sleep waiting for a mutex in the atomic context.
CVE-2023-53073 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd/core: Always clear status for idx The variable 'status' (which contains the unhandled overflow bits) is not being properly masked in some cases, displaying the following warning: WARNING: CPU: 156 PID: 475601 at arch/x86/events/amd/core.c:972 amd_pmu_v2_handle_irq+0x216/0x270 This seems to be happening because the loop is being continued before the status bit being unset, in case x86_perf_event_set_period() returns 0. This is also causing an inconsistency because the "handled" counter is incremented, but the status bit is not cleaned. Move the bit cleaning together above, together when the "handled" counter is incremented.
CVE-2023-53078 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: scsi_dh_alua: Fix memleak for 'qdata' in alua_activate() If alua_rtpg_queue() failed from alua_activate(), then 'qdata' is not freed, which will cause following memleak: unreferenced object 0xffff88810b2c6980 (size 32): comm "kworker/u16:2", pid 635322, jiffies 4355801099 (age 1216426.076s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 40 39 24 c1 ff ff ff ff 00 f8 ea 0a 81 88 ff ff @9$............. backtrace: [<0000000098f3a26d>] alua_activate+0xb0/0x320 [<000000003b529641>] scsi_dh_activate+0xb2/0x140 [<000000007b296db3>] activate_path_work+0xc6/0xe0 [dm_multipath] [<000000007adc9ace>] process_one_work+0x3c5/0x730 [<00000000c457a985>] worker_thread+0x93/0x650 [<00000000cb80e628>] kthread+0x1ba/0x210 [<00000000a1e61077>] ret_from_fork+0x22/0x30 Fix the problem by freeing 'qdata' in error path.
CVE-2023-53065 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 7.8 High
In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix perf_output_begin parameter is incorrectly invoked in perf_event_bpf_output syzkaller reportes a KASAN issue with stack-out-of-bounds. The call trace is as follows: dump_stack+0x9c/0xd3 print_address_description.constprop.0+0x19/0x170 __kasan_report.cold+0x6c/0x84 kasan_report+0x3a/0x50 __perf_event_header__init_id+0x34/0x290 perf_event_header__init_id+0x48/0x60 perf_output_begin+0x4a4/0x560 perf_event_bpf_output+0x161/0x1e0 perf_iterate_sb_cpu+0x29e/0x340 perf_iterate_sb+0x4c/0xc0 perf_event_bpf_event+0x194/0x2c0 __bpf_prog_put.constprop.0+0x55/0xf0 __cls_bpf_delete_prog+0xea/0x120 [cls_bpf] cls_bpf_delete_prog_work+0x1c/0x30 [cls_bpf] process_one_work+0x3c2/0x730 worker_thread+0x93/0x650 kthread+0x1b8/0x210 ret_from_fork+0x1f/0x30 commit 267fb27352b6 ("perf: Reduce stack usage of perf_output_begin()") use on-stack struct perf_sample_data of the caller function. However, perf_event_bpf_output uses incorrect parameter to convert small-sized data (struct perf_bpf_event) into large-sized data (struct perf_sample_data), which causes memory overwriting occurs in __perf_event_header__init_id.
CVE-2023-53066 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: qed/qed_sriov: guard against NULL derefs from qed_iov_get_vf_info We have to make sure that the info returned by the helper is valid before using it. Found by Linux Verification Center (linuxtesting.org) with the SVACE static analysis tool.
CVE-2023-53051 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm crypt: add cond_resched() to dmcrypt_write() The loop in dmcrypt_write may be running for unbounded amount of time, thus we need cond_resched() in it. This commit fixes the following warning: [ 3391.153255][ C12] watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [dmcrypt_write/2:2897] ... [ 3391.387210][ C12] Call trace: [ 3391.390338][ C12] blk_attempt_bio_merge.part.6+0x38/0x158 [ 3391.395970][ C12] blk_attempt_plug_merge+0xc0/0x1b0 [ 3391.401085][ C12] blk_mq_submit_bio+0x398/0x550 [ 3391.405856][ C12] submit_bio_noacct+0x308/0x380 [ 3391.410630][ C12] dmcrypt_write+0x1e4/0x208 [dm_crypt] [ 3391.416005][ C12] kthread+0x130/0x138 [ 3391.419911][ C12] ret_from_fork+0x10/0x18
CVE-2023-53052 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cifs: fix use-after-free bug in refresh_cache_worker() The UAF bug occurred because we were putting DFS root sessions in cifs_umount() while DFS cache refresher was being executed. Make DFS root sessions have same lifetime as DFS tcons so we can avoid the use-after-free bug is DFS cache refresher and other places that require IPCs to get new DFS referrals on. Also, get rid of mount group handling in DFS cache as we no longer need it. This fixes below use-after-free bug catched by KASAN [ 379.946955] BUG: KASAN: use-after-free in __refresh_tcon.isra.0+0x10b/0xc10 [cifs] [ 379.947642] Read of size 8 at addr ffff888018f57030 by task kworker/u4:3/56 [ 379.948096] [ 379.948208] CPU: 0 PID: 56 Comm: kworker/u4:3 Not tainted 6.2.0-rc7-lku #23 [ 379.948661] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552-rebuilt.opensuse.org 04/01/2014 [ 379.949368] Workqueue: cifs-dfscache refresh_cache_worker [cifs] [ 379.949942] Call Trace: [ 379.950113] <TASK> [ 379.950260] dump_stack_lvl+0x50/0x67 [ 379.950510] print_report+0x16a/0x48e [ 379.950759] ? __virt_addr_valid+0xd8/0x160 [ 379.951040] ? __phys_addr+0x41/0x80 [ 379.951285] kasan_report+0xdb/0x110 [ 379.951533] ? __refresh_tcon.isra.0+0x10b/0xc10 [cifs] [ 379.952056] ? __refresh_tcon.isra.0+0x10b/0xc10 [cifs] [ 379.952585] __refresh_tcon.isra.0+0x10b/0xc10 [cifs] [ 379.953096] ? __pfx___refresh_tcon.isra.0+0x10/0x10 [cifs] [ 379.953637] ? __pfx___mutex_lock+0x10/0x10 [ 379.953915] ? lock_release+0xb6/0x720 [ 379.954167] ? __pfx_lock_acquire+0x10/0x10 [ 379.954443] ? refresh_cache_worker+0x34e/0x6d0 [cifs] [ 379.954960] ? __pfx_wb_workfn+0x10/0x10 [ 379.955239] refresh_cache_worker+0x4ad/0x6d0 [cifs] [ 379.955755] ? __pfx_refresh_cache_worker+0x10/0x10 [cifs] [ 379.956323] ? __pfx_lock_acquired+0x10/0x10 [ 379.956615] ? read_word_at_a_time+0xe/0x20 [ 379.956898] ? lockdep_hardirqs_on_prepare+0x12/0x220 [ 379.957235] process_one_work+0x535/0x990 [ 379.957509] ? __pfx_process_one_work+0x10/0x10 [ 379.957812] ? lock_acquired+0xb7/0x5f0 [ 379.958069] ? __list_add_valid+0x37/0xd0 [ 379.958341] ? __list_add_valid+0x37/0xd0 [ 379.958611] worker_thread+0x8e/0x630 [ 379.958861] ? __pfx_worker_thread+0x10/0x10 [ 379.959148] kthread+0x17d/0x1b0 [ 379.959369] ? __pfx_kthread+0x10/0x10 [ 379.959630] ret_from_fork+0x2c/0x50 [ 379.959879] </TASK>
CVE-2023-53047 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: tee: amdtee: fix race condition in amdtee_open_session There is a potential race condition in amdtee_open_session that may lead to use-after-free. For instance, in amdtee_open_session() after sess->sess_mask is set, and before setting: sess->session_info[i] = session_info; if amdtee_close_session() closes this same session, then 'sess' data structure will be released, causing kernel panic when 'sess' is accessed within amdtee_open_session(). The solution is to set the bit sess->sess_mask as the last step in amdtee_open_session().
CVE-2023-53046 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-12 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix race condition in hci_cmd_sync_clear There is a potential race condition in hci_cmd_sync_work and hci_cmd_sync_clear, and could lead to use-after-free. For instance, hci_cmd_sync_work is added to the 'req_workqueue' after cancel_work_sync The entry of 'cmd_sync_work_list' may be freed in hci_cmd_sync_clear, and causing kernel panic when it is used in 'hci_cmd_sync_work'. Here's the call trace: dump_stack_lvl+0x49/0x63 print_report.cold+0x5e/0x5d3 ? hci_cmd_sync_work+0x282/0x320 kasan_report+0xaa/0x120 ? hci_cmd_sync_work+0x282/0x320 __asan_report_load8_noabort+0x14/0x20 hci_cmd_sync_work+0x282/0x320 process_one_work+0x77b/0x11c0 ? _raw_spin_lock_irq+0x8e/0xf0 worker_thread+0x544/0x1180 ? poll_idle+0x1e0/0x1e0 kthread+0x285/0x320 ? process_one_work+0x11c0/0x11c0 ? kthread_complete_and_exit+0x30/0x30 ret_from_fork+0x22/0x30 </TASK> Allocated by task 266: kasan_save_stack+0x26/0x50 __kasan_kmalloc+0xae/0xe0 kmem_cache_alloc_trace+0x191/0x350 hci_cmd_sync_queue+0x97/0x2b0 hci_update_passive_scan+0x176/0x1d0 le_conn_complete_evt+0x1b5/0x1a00 hci_le_conn_complete_evt+0x234/0x340 hci_le_meta_evt+0x231/0x4e0 hci_event_packet+0x4c5/0xf00 hci_rx_work+0x37d/0x880 process_one_work+0x77b/0x11c0 worker_thread+0x544/0x1180 kthread+0x285/0x320 ret_from_fork+0x22/0x30 Freed by task 269: kasan_save_stack+0x26/0x50 kasan_set_track+0x25/0x40 kasan_set_free_info+0x24/0x40 ____kasan_slab_free+0x176/0x1c0 __kasan_slab_free+0x12/0x20 slab_free_freelist_hook+0x95/0x1a0 kfree+0xba/0x2f0 hci_cmd_sync_clear+0x14c/0x210 hci_unregister_dev+0xff/0x440 vhci_release+0x7b/0xf0 __fput+0x1f3/0x970 ____fput+0xe/0x20 task_work_run+0xd4/0x160 do_exit+0x8b0/0x22a0 do_group_exit+0xba/0x2a0 get_signal+0x1e4a/0x25b0 arch_do_signal_or_restart+0x93/0x1f80 exit_to_user_mode_prepare+0xf5/0x1a0 syscall_exit_to_user_mode+0x26/0x50 ret_from_fork+0x15/0x30
CVE-2022-49903 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix WARNING in ip6_route_net_exit_late() During the initialization of ip6_route_net_init_late(), if file ipv6_route or rt6_stats fails to be created, the initialization is successful by default. Therefore, the ipv6_route or rt6_stats file doesn't be found during the remove in ip6_route_net_exit_late(). It will cause WRNING. The following is the stack information: name 'rt6_stats' WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460 Modules linked in: Workqueue: netns cleanup_net RIP: 0010:remove_proc_entry+0x389/0x460 PKRU: 55555554 Call Trace: <TASK> ops_exit_list+0xb0/0x170 cleanup_net+0x4ea/0xb00 process_one_work+0x9bf/0x1710 worker_thread+0x665/0x1080 kthread+0x2e4/0x3a0 ret_from_fork+0x1f/0x30 </TASK>