CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: cancel queued works in probe error path
If it fails to get the devices's MAC address, octep_probe exits while
leaving the delayed work intr_poll_task queued. When the work later
runs, it's a use after free.
Move the cancelation of intr_poll_task from octep_remove into
octep_device_cleanup. This does not change anything in the octep_remove
flow, but octep_device_cleanup is called also in the octep_probe error
path, where the cancelation is needed.
Note that the cancelation of ctrl_mbox_task has to follow
intr_poll_task's, because the ctrl_mbox_task may be queued by
intr_poll_task. |
In the Linux kernel, the following vulnerability has been resolved:
mcb: mcb-parse: fix error handing in chameleon_parse_gdd()
If mcb_device_register() returns error in chameleon_parse_gdd(), the refcount
of bus and device name are leaked. Fix this by calling put_device() to give up
the reference, so they can be released in mcb_release_dev() and kobject_cleanup(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix memory leak in hpd_rx_irq_create_workqueue()
If construction of the array of work queues to handle hpd_rx_irq offload
work fails, we need to unwind. Destroy all the created workqueues and
the allocated memory for the hpd_rx_irq_offload_work_queue struct array. |
In the Linux kernel, the following vulnerability has been resolved:
r6040: Fix kmemleak in probe and remove
There is a memory leaks reported by kmemleak:
unreferenced object 0xffff888116111000 (size 2048):
comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s)
hex dump (first 32 bytes):
00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................
08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff815bcd82>] kmalloc_trace+0x22/0x60
[<ffffffff827e20ee>] phy_device_create+0x4e/0x90
[<ffffffff827e6072>] get_phy_device+0xd2/0x220
[<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0
[<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0
[<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040]
...
The problem occurs in probe process as follows:
r6040_init_one:
mdiobus_register
mdiobus_scan <- alloc and register phy_device,
the reference count of phy_device is 3
r6040_mii_probe
phy_connect <- connect to the first phy_device,
so the reference count of the first
phy_device is 4, others are 3
register_netdev <- fault inject succeeded, goto error handling path
// error handling path
err_out_mdio_unregister:
mdiobus_unregister(lp->mii_bus);
err_out_mdio:
mdiobus_free(lp->mii_bus); <- the reference count of the first
phy_device is 1, it is not released
and other phy_devices are released
// similarly, the remove process also has the same problem
The root cause is traced to the phy_device is not disconnected when
removes one r6040 device in r6040_remove_one() or on error handling path
after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet
device is connected to the first PHY device of mii_bus, in order to
notify the connected driver when the link status changes, which is the
default behavior of the PHY infrastructure to handle everything.
Therefore the phy_device should be disconnected when removes one r6040
device or on error handling path.
Fix it by adding phy_disconnect() when removes one r6040 device or on
error handling path after r6040_mii probed successfully. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502664/ |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix memory leaks in ext4_fname_{setup_filename,prepare_lookup}
If the filename casefolding fails, we'll be leaking memory from the
fscrypt_name struct, namely from the 'crypto_buf.name' member.
Make sure we free it in the error path on both ext4_fname_setup_filename()
and ext4_fname_prepare_lookup() functions. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, cpumap: Handle skb as well when clean up ptr_ring
The following warning was reported when running xdp_redirect_cpu with
both skb-mode and stress-mode enabled:
------------[ cut here ]------------
Incorrect XDP memory type (-2128176192) usage
WARNING: CPU: 7 PID: 1442 at net/core/xdp.c:405
Modules linked in:
CPU: 7 PID: 1442 Comm: kworker/7:0 Tainted: G 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events __cpu_map_entry_free
RIP: 0010:__xdp_return+0x1e4/0x4a0
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
? __xdp_return+0x1e4/0x4a0
......
xdp_return_frame+0x4d/0x150
__cpu_map_entry_free+0xf9/0x230
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The reason for the warning is twofold. One is due to the kthread
cpu_map_kthread_run() is stopped prematurely. Another one is
__cpu_map_ring_cleanup() doesn't handle skb mode and treats skbs in
ptr_ring as XDP frames.
Prematurely-stopped kthread will be fixed by the preceding patch and
ptr_ring will be empty when __cpu_map_ring_cleanup() is called. But
as the comments in __cpu_map_ring_cleanup() said, handling and freeing
skbs in ptr_ring as well to "catch any broken behaviour gracefully". |
In the Linux kernel, the following vulnerability has been resolved:
media: amphion: fix REVERSE_INULL issues reported by coverity
null-checking of a pointor is suggested before dereferencing it |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix locking in pdc_iodc_print() firmware call
Utilize pdc_lock spinlock to protect parallel modifications of the
iodc_dbuf[] buffer, check length to prevent buffer overflow of
iodc_dbuf[], drop the iodc_retbuf[] buffer and fix some wrong
indentings. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: Avoid nf_ct_helper_hash uses after free
If nf_conntrack_init_start() fails (for example due to a
register_nf_conntrack_bpf() failure), the nf_conntrack_helper_fini()
clean-up path frees the nf_ct_helper_hash map.
When built with NF_CONNTRACK=y, further netfilter modules (e.g:
netfilter_conntrack_ftp) can still be loaded and call
nf_conntrack_helpers_register(), independently of whether nf_conntrack
initialized correctly. This accesses the nf_ct_helper_hash dangling
pointer and causes a uaf, possibly leading to random memory corruption.
This patch guards nf_conntrack_helper_register() from accessing a freed
or uninitialized nf_ct_helper_hash pointer and fixes possible
uses-after-free when loading a conntrack module. |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: avoid double ->queue_rq() because of early timeout
David Jeffery found one double ->queue_rq() issue, so far it can
be triggered in VM use case because of long vmexit latency or preempt
latency of vCPU pthread or long page fault in vCPU pthread, then block
IO req could be timed out before queuing the request to hardware but after
calling blk_mq_start_request() during ->queue_rq(), then timeout handler
may handle it by requeue, then double ->queue_rq() is caused, and kernel
panic.
So far, it is driver's responsibility to cover the race between timeout
and completion, so it seems supposed to be solved in driver in theory,
given driver has enough knowledge.
But it is really one common problem, lots of driver could have similar
issue, and could be hard to fix all affected drivers, even it isn't easy
for driver to handle the race. So David suggests this patch by draining
in-progress ->queue_rq() for solving this issue. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Check return value after calling platform_get_resource()
platform_get_resource() may return NULL pointer, we need check its
return value to avoid null-ptr-deref in resource_size(). |
In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: socinfo: Add kfree for kstrdup
Add kfree() in the later error handling in order to avoid memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Fix PCI device refcount leak in radeon_atrm_get_bios()
As comment of pci_get_class() says, it returns a pci_device with its
refcount increased and decreased the refcount for the input parameter
@from if it is not NULL.
If we break the loop in radeon_atrm_get_bios() with 'pdev' not NULL, we
need to call pci_dev_put() to decrease the refcount. Add the missing
pci_dev_put() to avoid refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/perf: add sentinel to xehp_oa_b_counters
Arrays passed to reg_in_range_table should end with empty record.
The patch solves KASAN detected bug with signature:
BUG: KASAN: global-out-of-bounds in xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915]
Read of size 4 at addr ffffffffa1555d90 by task perf/1518
CPU: 4 PID: 1518 Comm: perf Tainted: G U 6.4.0-kasan_438-g3303d06107f3+ #1
Hardware name: Intel Corporation Meteor Lake Client Platform/MTL-P DDR5 SODIMM SBS RVP, BIOS MTLPFWI1.R00.3223.D80.2305311348 05/31/2023
Call Trace:
<TASK>
...
xehp_is_valid_b_counter_addr+0x2c7/0x350 [i915]
(cherry picked from commit 2f42c5afb34b5696cf5fe79e744f99be9b218798) |
In the Linux kernel, the following vulnerability has been resolved:
perf trace: Really free the evsel->priv area
In 3cb4d5e00e037c70 ("perf trace: Free syscall tp fields in
evsel->priv") it only was freeing if strcmp(evsel->tp_format->system,
"syscalls") returned zero, while the corresponding initialization of
evsel->priv was being performed if it was _not_ zero, i.e. if the tp
system wasn't 'syscalls'.
Just stop looking for that and free it if evsel->priv was set, which
should be equivalent.
Also use the pre-existing evsel_trace__delete() function.
This resolves these leaks, detected with:
$ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin
=================================================================
==481565==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 40 byte(s) in 1 object(s) allocated from:
#0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
#1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
#2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
#3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
#4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
#5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
#6 0x540e8b in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3212
#7 0x540e8b in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
#8 0x540e8b in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
#9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
#10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
#11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
#12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
#13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)
Direct leak of 40 byte(s) in 1 object(s) allocated from:
#0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
#1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
#2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
#3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
#4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
#5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
#6 0x540dd1 in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3205
#7 0x540dd1 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
#8 0x540dd1 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
#9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
#10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
#11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
#12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
#13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)
SUMMARY: AddressSanitizer: 80 byte(s) leaked in 2 allocation(s).
[root@quaco ~]#
With this we plug all leaks with "perf trace sleep 1". |
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix invalid derefence of sb_lvbptr
I experience issues when putting a lkbsb on the stack and have sb_lvbptr
field to a dangled pointer while not using DLM_LKF_VALBLK. It will crash
with the following kernel message, the dangled pointer is here
0xdeadbeef as example:
[ 102.749317] BUG: unable to handle page fault for address: 00000000deadbeef
[ 102.749320] #PF: supervisor read access in kernel mode
[ 102.749323] #PF: error_code(0x0000) - not-present page
[ 102.749325] PGD 0 P4D 0
[ 102.749332] Oops: 0000 [#1] PREEMPT SMP PTI
[ 102.749336] CPU: 0 PID: 1567 Comm: lock_torture_wr Tainted: G W 5.19.0-rc3+ #1565
[ 102.749343] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014
[ 102.749344] RIP: 0010:memcpy_erms+0x6/0x10
[ 102.749353] Code: cc cc cc cc eb 1e 0f 1f 00 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4 c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20 72 7e 40 38 fe
[ 102.749355] RSP: 0018:ffff97a58145fd08 EFLAGS: 00010202
[ 102.749358] RAX: ffff901778b77070 RBX: 0000000000000000 RCX: 0000000000000040
[ 102.749360] RDX: 0000000000000040 RSI: 00000000deadbeef RDI: ffff901778b77070
[ 102.749362] RBP: ffff97a58145fd10 R08: ffff901760b67a70 R09: 0000000000000001
[ 102.749364] R10: ffff9017008e2cb8 R11: 0000000000000001 R12: ffff901760b67a70
[ 102.749366] R13: ffff901760b78f00 R14: 0000000000000003 R15: 0000000000000001
[ 102.749368] FS: 0000000000000000(0000) GS:ffff901876e00000(0000) knlGS:0000000000000000
[ 102.749372] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.749374] CR2: 00000000deadbeef CR3: 000000017c49a004 CR4: 0000000000770ef0
[ 102.749376] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 102.749378] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 102.749379] PKRU: 55555554
[ 102.749381] Call Trace:
[ 102.749382] <TASK>
[ 102.749383] ? send_args+0xb2/0xd0
[ 102.749389] send_common+0xb7/0xd0
[ 102.749395] _unlock_lock+0x2c/0x90
[ 102.749400] unlock_lock.isra.56+0x62/0xa0
[ 102.749405] dlm_unlock+0x21e/0x330
[ 102.749411] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 102.749416] torture_unlock+0x5a/0x90 [dlm_locktorture]
[ 102.749419] ? preempt_count_sub+0xba/0x100
[ 102.749427] lock_torture_writer+0xbd/0x150 [dlm_locktorture]
[ 102.786186] kthread+0x10a/0x130
[ 102.786581] ? kthread_complete_and_exit+0x20/0x20
[ 102.787156] ret_from_fork+0x22/0x30
[ 102.787588] </TASK>
[ 102.787855] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common kvm_intel iTCO_wdt iTCO_vendor_support kvm vmw_vsock_virtio_transport qxl irqbypass vmw_vsock_virtio_transport_common drm_ttm_helper crc32_pclmul joydev crc32c_intel ttm vsock virtio_scsi virtio_balloon snd_pcm drm_kms_helper virtio_console snd_timer snd drm soundcore syscopyarea i2c_i801 sysfillrect sysimgblt i2c_smbus pcspkr fb_sys_fops lpc_ich serio_raw
[ 102.792536] CR2: 00000000deadbeef
[ 102.792930] ---[ end trace 0000000000000000 ]---
This patch fixes the issue by checking also on DLM_LKF_VALBLK on exflags
is set when copying the lvbptr array instead of if it's just null which
fixes for me the issue.
I think this patch can fix other dlm users as well, depending how they
handle the init, freeing memory handling of sb_lvbptr and don't set
DLM_LKF_VALBLK for some dlm_lock() calls. It might a there could be a
hidden issue all the time. However with checking on DLM_LKF_VALBLK the
user always need to provide a sb_lvbptr non-null value. There might be
more intelligent handling between per ls lvblen, DLM_LKF_VALBLK and
non-null to report the user the way how DLM API is used is wrong but can
be added for later, this will only fix the current behaviour. |
In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: don't access released socket during error recovery
While the error recovery work is temporarily failing reconnect attempts,
running the 'nvme list' command causes a kernel NULL pointer dereference
by calling getsockname() with a released socket.
During error recovery work, the nvme tcp socket is released and a new one
created, so it is not safe to access the socket without proper check. |
In the Linux kernel, the following vulnerability has been resolved:
spi: bcm-qspi: return error if neither hif_mspi nor mspi is available
If neither a "hif_mspi" nor "mspi" resource is present, the driver will
just early exit in probe but still return success. Apart from not doing
anything meaningful, this would then also lead to a null pointer access
on removal, as platform_get_drvdata() would return NULL, which it would
then try to dereference when trying to unregister the spi master.
Fix this by unconditionally calling devm_ioremap_resource(), as it can
handle a NULL res and will then return a viable ERR_PTR() if we get one.
The "return 0;" was previously a "goto qspi_resource_err;" where then
ret was returned, but since ret was still initialized to 0 at this place
this was a valid conversion in 63c5395bb7a9 ("spi: bcm-qspi: Fix
use-after-free on unbind"). The issue was not introduced by this commit,
only made more obvious. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, arm64: Fixed a BTI error on returning to patched function
When BPF_TRAMP_F_CALL_ORIG is set, BPF trampoline uses BLR to jump
back to the instruction next to call site to call the patched function.
For BTI-enabled kernel, the instruction next to call site is usually
PACIASP, in this case, it's safe to jump back with BLR. But when
the call site is not followed by a PACIASP or bti, a BTI exception
is triggered.
Here is a fault log:
Unhandled 64-bit el1h sync exception on CPU0, ESR 0x0000000034000002 -- BTI
CPU: 0 PID: 263 Comm: test_progs Tainted: GF
Hardware name: linux,dummy-virt (DT)
pstate: 40400805 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c)
pc : bpf_fentry_test1+0xc/0x30
lr : bpf_trampoline_6442573892_0+0x48/0x1000
sp : ffff80000c0c3a50
x29: ffff80000c0c3a90 x28: ffff0000c2e6c080 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000050
x23: 0000000000000000 x22: 0000ffffcfd2a7f0 x21: 000000000000000a
x20: 0000ffffcfd2a7f0 x19: 0000000000000000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffcfd2a7f0
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff80000914f5e4 x9 : ffff8000082a1528
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0101010101010101
x5 : 0000000000000000 x4 : 00000000fffffff2 x3 : 0000000000000001
x2 : ffff8001f4b82000 x1 : 0000000000000000 x0 : 0000000000000001
Kernel panic - not syncing: Unhandled exception
CPU: 0 PID: 263 Comm: test_progs Tainted: GF
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xec/0x144
show_stack+0x24/0x7c
dump_stack_lvl+0x8c/0xb8
dump_stack+0x18/0x34
panic+0x1cc/0x3ec
__el0_error_handler_common+0x0/0x130
el1h_64_sync_handler+0x60/0xd0
el1h_64_sync+0x78/0x7c
bpf_fentry_test1+0xc/0x30
bpf_fentry_test1+0xc/0x30
bpf_prog_test_run_tracing+0xdc/0x2a0
__sys_bpf+0x438/0x22a0
__arm64_sys_bpf+0x30/0x54
invoke_syscall+0x78/0x110
el0_svc_common.constprop.0+0x6c/0x1d0
do_el0_svc+0x38/0xe0
el0_svc+0x30/0xd0
el0t_64_sync_handler+0x1ac/0x1b0
el0t_64_sync+0x1a0/0x1a4
Kernel Offset: disabled
CPU features: 0x0000,00034c24,f994fdab
Memory Limit: none
And the instruction next to call site of bpf_fentry_test1 is ADD,
not PACIASP:
<bpf_fentry_test1>:
bti c
nop
nop
add w0, w0, #0x1
paciasp
For BPF prog, JIT always puts a PACIASP after call site for BTI-enabled
kernel, so there is no problem. To fix it, replace BLR with RET to bypass
the branch target check. |