| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix memleak for 'conf->bio_split'
In the error path of raid10_run(), 'conf' need be freed, however,
'conf->bio_split' is missed and memory will be leaked.
Since there are 3 places to free 'conf', factor out a helper to fix the
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add check for cstate
As kzalloc may fail and return NULL pointer,
it should be better to check cstate
in order to avoid the NULL pointer dereference
in __drm_atomic_helper_crtc_reset.
Patchwork: https://patchwork.freedesktop.org/patch/514163/ |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix incorrect splitting in btrfs_drop_extent_map_range
In production we were seeing a variety of WARN_ON()'s in the extent_map
code, specifically in btrfs_drop_extent_map_range() when we have to call
add_extent_mapping() for our second split.
Consider the following extent map layout
PINNED
[0 16K) [32K, 48K)
and then we call btrfs_drop_extent_map_range for [0, 36K), with
skip_pinned == true. The initial loop will have
start = 0
end = 36K
len = 36K
we will find the [0, 16k) extent, but since we are pinned we will skip
it, which has this code
start = em_end;
if (end != (u64)-1)
len = start + len - em_end;
em_end here is 16K, so now the values are
start = 16K
len = 16K + 36K - 16K = 36K
len should instead be 20K. This is a problem when we find the next
extent at [32K, 48K), we need to split this extent to leave [36K, 48k),
however the code for the split looks like this
split->start = start + len;
split->len = em_end - (start + len);
In this case we have
em_end = 48K
split->start = 16K + 36K // this should be 16K + 20K
split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K
and now we have an invalid extent_map in the tree that potentially
overlaps other entries in the extent map. Even in the non-overlapping
case we will have split->start set improperly, which will cause problems
with any block related calculations.
We don't actually need len in this loop, we can simply use end as our
end point, and only adjust start up when we find a pinned extent we need
to skip.
Adjust the logic to do this, which keeps us from inserting an invalid
extent map.
We only skip_pinned in the relocation case, so this is relatively rare,
except in the case where you are running relocation a lot, which can
happen with auto relocation on. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix race condition in hidp_session_thread
There is a potential race condition in hidp_session_thread that may
lead to use-after-free. For instance, the timer is active while
hidp_del_timer is called in hidp_session_thread(). After hidp_session_put,
then 'session' will be freed, causing kernel panic when hidp_idle_timeout
is running.
The solution is to use del_timer_sync instead of del_timer.
Here is the call trace:
? hidp_session_probe+0x780/0x780
call_timer_fn+0x2d/0x1e0
__run_timers.part.0+0x569/0x940
hidp_session_probe+0x780/0x780
call_timer_fn+0x1e0/0x1e0
ktime_get+0x5c/0xf0
lapic_next_deadline+0x2c/0x40
clockevents_program_event+0x205/0x320
run_timer_softirq+0xa9/0x1b0
__do_softirq+0x1b9/0x641
__irq_exit_rcu+0xdc/0x190
irq_exit_rcu+0xe/0x20
sysvec_apic_timer_interrupt+0xa1/0xc0 |
| In the Linux kernel, the following vulnerability has been resolved:
inotify: Avoid reporting event with invalid wd
When inotify_freeing_mark() races with inotify_handle_inode_event() it
can happen that inotify_handle_inode_event() sees that i_mark->wd got
already reset to -1 and reports this value to userspace which can
confuse the inotify listener. Avoid the problem by validating that wd is
sensible (and pretend the mark got removed before the event got
generated otherwise). |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sc16is7xx: setup GPIO controller later in probe
The GPIO controller component of the sc16is7xx driver is setup too
early, which can result in a race condition where another device tries
to utilise the GPIO lines before the sc16is7xx device has finished
initialising.
This issue manifests itself as an Oops when the GPIO lines are configured:
Unable to handle kernel read from unreadable memory at virtual address
...
pc : sc16is7xx_gpio_direction_output+0x68/0x108 [sc16is7xx]
lr : sc16is7xx_gpio_direction_output+0x4c/0x108 [sc16is7xx]
...
Call trace:
sc16is7xx_gpio_direction_output+0x68/0x108 [sc16is7xx]
gpiod_direction_output_raw_commit+0x64/0x318
gpiod_direction_output+0xb0/0x170
create_gpio_led+0xec/0x198
gpio_led_probe+0x16c/0x4f0
platform_drv_probe+0x5c/0xb0
really_probe+0xe8/0x448
driver_probe_device+0xe8/0x138
__device_attach_driver+0x94/0x118
bus_for_each_drv+0x8c/0xe0
__device_attach+0x100/0x1b8
device_initial_probe+0x28/0x38
bus_probe_device+0xa4/0xb0
deferred_probe_work_func+0x90/0xe0
process_one_work+0x1c4/0x480
worker_thread+0x54/0x430
kthread+0x138/0x150
ret_from_fork+0x10/0x1c
This patch moves the setup of the GPIO controller functions to later in the
probe function, ensuring the sc16is7xx device has already finished
initialising by the time other devices try to make use of the GPIO lines.
The error handling has also been reordered to reflect the new
initialisation order. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dcssblk: fix kernel crash with list_add corruption
Commit fb08a1908cb1 ("dax: simplify the dax_device <-> gendisk
association") introduced new logic for gendisk association, requiring
drivers to explicitly call dax_add_host() and dax_remove_host().
For dcssblk driver, some dax_remove_host() calls were missing, e.g. in
device remove path. The commit also broke error handling for out_dax case
in device add path, resulting in an extra put_device() w/o the previous
get_device() in that case.
This lead to stale xarray entries after device add / remove cycles. In the
case when a previously used struct gendisk pointer (xarray index) would be
used again, because blk_alloc_disk() happened to return such a pointer, the
xa_insert() in dax_add_host() would fail and go to out_dax, doing the extra
put_device() in the error path. In combination with an already flawed error
handling in dcssblk (device_register() cleanup), which needs to be
addressed in a separate patch, this resulted in a missing device_del() /
klist_del(), and eventually in the kernel crash with list_add corruption on
a subsequent device_add() / klist_add().
Fix this by adding the missing dax_remove_host() calls, and also move the
put_device() in the error path to restore the previous logic. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-generic: prohibit potential out-of-bounds access
The fbdev test of IGT may write after EOF, which lead to out-of-bound
access for drm drivers with fbdev-generic. For example, run fbdev test
on a x86+ast2400 platform, with 1680x1050 resolution, will cause the
linux kernel hang with the following call trace:
Oops: 0000 [#1] PREEMPT SMP PTI
[IGT] fbdev: starting subtest eof
Workqueue: events drm_fb_helper_damage_work [drm_kms_helper]
[IGT] fbdev: starting subtest nullptr
RIP: 0010:memcpy_erms+0xa/0x20
RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246
RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0
RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000
RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0
R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80
R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30
FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0
Call Trace:
<TASK>
? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper]
drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper]
process_one_work+0x21f/0x430
worker_thread+0x4e/0x3c0
? __pfx_worker_thread+0x10/0x10
kthread+0xf4/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
CR2: ffffa17d40e0b000
---[ end trace 0000000000000000 ]---
The is because damage rectangles computed by
drm_fb_helper_memory_range_to_clip() function is not guaranteed to be
bound in the screen's active display area. Possible reasons are:
1) Buffers are allocated in the granularity of page size, for mmap system
call support. The shadow screen buffer consumed by fbdev emulation may
also choosed be page size aligned.
2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip()
will introduce off-by-one error.
For example, on a 16KB page size system, in order to store a 1920x1080
XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size
1920*1080*4 can not be divided exactly by 16KB.
1920 * 1080 * 4 = 8294400 bytes
506 * 16 * 1024 = 8290304 bytes
507 * 16 * 1024 = 8306688 bytes
line_length = 1920*4 = 7680 bytes
507 * 16 * 1024 / 7680 = 1081.6
off / line_length = 507 * 16 * 1024 / 7680 = 1081
DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082
memcpy_toio() typically issue the copy line by line, when copy the last
line, out-of-bound access will be happen. Because:
1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688
Note that userspace may still write to the invisiable area if a larger
buffer than width x stride is exposed. But it is not a big issue as
long as there still have memory resolve the access if not drafting so
far.
- Also limit the y1 (Daniel)
- keep fix patch it to minimal (Daniel)
- screen_size is page size aligned because of it need mmap (Thomas)
- Adding fixes tag (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
pcmcia: rsrc_nonstatic: Fix memory leak in nonstatic_release_resource_db()
When nonstatic_release_resource_db() frees all resources associated
with an PCMCIA socket, it forgets to free socket_data too, causing
a memory leak observable with kmemleak:
unreferenced object 0xc28d1000 (size 64):
comm "systemd-udevd", pid 297, jiffies 4294898478 (age 194.484s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 f0 85 0e c3 00 00 00 00 ................
00 00 00 00 0c 10 8d c2 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffda4245>] __kmem_cache_alloc_node+0x2d7/0x4a0
[<7e51f0c8>] kmalloc_trace+0x31/0xa4
[<d52b4ca0>] nonstatic_init+0x24/0x1a4 [pcmcia_rsrc]
[<a2f13e08>] pcmcia_register_socket+0x200/0x35c [pcmcia_core]
[<a728be1b>] yenta_probe+0x4d8/0xa70 [yenta_socket]
[<c48fac39>] pci_device_probe+0x99/0x194
[<84b7c690>] really_probe+0x181/0x45c
[<8060fe6e>] __driver_probe_device+0x75/0x1f4
[<b9b76f43>] driver_probe_device+0x28/0xac
[<648b766f>] __driver_attach+0xeb/0x1e4
[<6e9659eb>] bus_for_each_dev+0x61/0xb4
[<25a669f3>] driver_attach+0x1e/0x28
[<d8671d6b>] bus_add_driver+0x102/0x20c
[<df0d323c>] driver_register+0x5b/0x120
[<942cd8a4>] __pci_register_driver+0x44/0x4c
[<e536027e>] __UNIQUE_ID___addressable_cleanup_module188+0x1c/0xfffff000 [iTCO_vendor_support]
Fix this by freeing socket_data too.
Tested on a Acer Travelmate 4002WLMi by manually binding/unbinding
the yenta_cardbus driver (yenta_socket). |
| In the Linux kernel, the following vulnerability has been resolved:
net: nsh: Use correct mac_offset to unwind gso skb in nsh_gso_segment()
As the call trace shows, skb_panic was caused by wrong skb->mac_header
in nsh_gso_segment():
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 PID: 2737 Comm: syz Not tainted 6.3.0-next-20230505 #1
RIP: 0010:skb_panic+0xda/0xe0
call Trace:
skb_push+0x91/0xa0
nsh_gso_segment+0x4f3/0x570
skb_mac_gso_segment+0x19e/0x270
__skb_gso_segment+0x1e8/0x3c0
validate_xmit_skb+0x452/0x890
validate_xmit_skb_list+0x99/0xd0
sch_direct_xmit+0x294/0x7c0
__dev_queue_xmit+0x16f0/0x1d70
packet_xmit+0x185/0x210
packet_snd+0xc15/0x1170
packet_sendmsg+0x7b/0xa0
sock_sendmsg+0x14f/0x160
The root cause is:
nsh_gso_segment() use skb->network_header - nhoff to reset mac_header
in skb_gso_error_unwind() if inner-layer protocol gso fails.
However, skb->network_header may be reset by inner-layer protocol
gso function e.g. mpls_gso_segment. skb->mac_header reset by the
inaccurate network_header will be larger than skb headroom.
nsh_gso_segment
nhoff = skb->network_header - skb->mac_header;
__skb_pull(skb,nsh_len)
skb_mac_gso_segment
mpls_gso_segment
skb_reset_network_header(skb);//skb->network_header+=nsh_len
return -EINVAL;
skb_gso_error_unwind
skb_push(skb, nsh_len);
skb->mac_header = skb->network_header - nhoff;
// skb->mac_header > skb->headroom, cause skb_push panic
Use correct mac_offset to restore mac_header and get rid of nhoff. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: dump vmalloc memory info safely
Currently, for double invoke call_rcu(), will dump rcu_head objects memory
info, if the objects is not allocated from the slab allocator, the
vmalloc_dump_obj() will be invoke and the vmap_area_lock spinlock need to
be held, since the call_rcu() can be invoked in interrupt context,
therefore, there is a possibility of spinlock deadlock scenarios.
And in Preempt-RT kernel, the rcutorture test also trigger the following
lockdep warning:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 1
3 locks held by swapper/0/1:
#0: ffffffffb534ee80 (fullstop_mutex){+.+.}-{4:4}, at: torture_init_begin+0x24/0xa0
#1: ffffffffb5307940 (rcu_read_lock){....}-{1:3}, at: rcu_torture_init+0x1ec7/0x2370
#2: ffffffffb536af40 (vmap_area_lock){+.+.}-{3:3}, at: find_vmap_area+0x1f/0x70
irq event stamp: 565512
hardirqs last enabled at (565511): [<ffffffffb379b138>] __call_rcu_common+0x218/0x940
hardirqs last disabled at (565512): [<ffffffffb5804262>] rcu_torture_init+0x20b2/0x2370
softirqs last enabled at (399112): [<ffffffffb36b2586>] __local_bh_enable_ip+0x126/0x170
softirqs last disabled at (399106): [<ffffffffb43fef59>] inet_register_protosw+0x9/0x1d0
Preemption disabled at:
[<ffffffffb58040c3>] rcu_torture_init+0x1f13/0x2370
CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.5.0-rc4-rt2-yocto-preempt-rt+ #15
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xb0
dump_stack+0x14/0x20
__might_resched+0x1aa/0x280
? __pfx_rcu_torture_err_cb+0x10/0x10
rt_spin_lock+0x53/0x130
? find_vmap_area+0x1f/0x70
find_vmap_area+0x1f/0x70
vmalloc_dump_obj+0x20/0x60
mem_dump_obj+0x22/0x90
__call_rcu_common+0x5bf/0x940
? debug_smp_processor_id+0x1b/0x30
call_rcu_hurry+0x14/0x20
rcu_torture_init+0x1f82/0x2370
? __pfx_rcu_torture_leak_cb+0x10/0x10
? __pfx_rcu_torture_leak_cb+0x10/0x10
? __pfx_rcu_torture_init+0x10/0x10
do_one_initcall+0x6c/0x300
? debug_smp_processor_id+0x1b/0x30
kernel_init_freeable+0x2b9/0x540
? __pfx_kernel_init+0x10/0x10
kernel_init+0x1f/0x150
ret_from_fork+0x40/0x50
? __pfx_kernel_init+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The previous patch fixes this by using the deadlock-safe best-effort
version of find_vm_area. However, in case of failure print the fact that
the pointer was a vmalloc pointer so that we print at least something. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix memory leak in error path of kcm_sendmsg()
syzbot reported a memory leak like below:
BUG: memory leak
unreferenced object 0xffff88810b088c00 (size 240):
comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s)
hex dump (first 32 bytes):
00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634
[<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline]
[<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815
[<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline]
[<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748
[<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494
[<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548
[<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577
[<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
[<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append
newly allocated skbs to 'head'. If some bytes are copied, an error occurred,
and jumped to out_error label, 'last_skb' is left unmodified. A later
kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the
'head' frag_list and causing the leak.
This patch fixes this issue by properly updating the last allocated skb in
'last_skb'. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups
of_find_node_by_phandle() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: rndis_host: Secure rndis_query check against int overflow
Variables off and len typed as uint32 in rndis_query function
are controlled by incoming RNDIS response message thus their
value may be manipulated. Setting off to a unexpectetly large
value will cause the sum with len and 8 to overflow and pass
the implemented validation step. Consequently the response
pointer will be referring to a location past the expected
buffer boundaries allowing information leakage e.g. via
RNDIS_OID_802_3_PERMANENT_ADDRESS OID. |
| In the Linux kernel, the following vulnerability has been resolved:
media: rcar_fdp1: Fix refcount leak in probe and remove function
rcar_fcp_get() take reference, which should be balanced with
rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and
the error paths of fdp1_probe() to fix this.
[hverkuil: resolve merge conflict, remove() is now void] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests
The following message and call trace was seen with debug kernels:
DMA-API: qla2xxx 0000:41:00.0: device driver failed to check map
error [device address=0x00000002a3ff38d8] [size=1024 bytes] [mapped as
single]
WARNING: CPU: 0 PID: 2930 at kernel/dma/debug.c:1017
check_unmap+0xf42/0x1990
Call Trace:
debug_dma_unmap_page+0xc9/0x100
qla_nvme_ls_unmap+0x141/0x210 [qla2xxx]
Remove DMA mapping from the driver altogether, as it is already done by FC
layer. This prevents the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: dropping parent refcount after pd_free_fn() is done
Some cgroup policies will access parent pd through child pd even
after pd_offline_fn() is done. If pd_free_fn() for parent is called
before child, then UAF can be triggered. Hence it's better to guarantee
the order of pd_free_fn().
Currently refcount of parent blkg is dropped in __blkg_release(), which
is before pd_free_fn() is called in blkg_free_work_fn() while
blkg_free_work_fn() is called asynchronously.
This patch make sure pd_free_fn() called from removing cgroup is ordered
by delaying dropping parent refcount after calling pd_free_fn() for
child.
BTW, pd_free_fn() will also be called from blkcg_deactivate_policy()
from deleting device, and following patches will guarantee the order. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fix potential memory leak in mlx5e_init_rep_rx
The memory pointed to by the priv->rx_res pointer is not freed in the error
path of mlx5e_init_rep_rx, which can lead to a memory leak. Fix by freeing
the memory in the error path, thereby making the error path identical to
mlx5e_cleanup_rep_rx(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: check CAN address family in isotp_bind()
Add missing check to block non-AF_CAN binds.
Syzbot created some code which matched the right sockaddr struct size
but used AF_XDP (0x2C) instead of AF_CAN (0x1D) in the address family
field:
bind$xdp(r2, &(0x7f0000000540)={0x2c, 0x0, r4, 0x0, r2}, 0x10)
^^^^
This has no funtional impact but the userspace should be notified about
the wrong address family field content. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: fsl_upm: Fix an off-by one test in fun_exec_op()
'op-cs' is copied in 'fun->mchip_number' which is used to access the
'mchip_offsets' and the 'rnb_gpio' arrays.
These arrays have NAND_MAX_CHIPS elements, so the index must be below this
limit.
Fix the sanity check in order to avoid the NAND_MAX_CHIPS value. This
would lead to out-of-bound accesses. |