| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix uninitialized waitqueue in transaction manager
The transaction manager initialization in txInit() was not properly
initializing TxBlock[0].waitor waitqueue, causing a crash when
txEnd(0) is called on read-only filesystems.
When a filesystem is mounted read-only, txBegin() returns tid=0 to
indicate no transaction. However, txEnd(0) still gets called and
tries to access TxBlock[0].waitor via tid_to_tblock(0), but this
waitqueue was never initialized because the initialization loop
started at index 1 instead of 0.
This causes a 'non-static key' lockdep warning and system crash:
INFO: trying to register non-static key in txEnd
Fix by ensuring all transaction blocks including TxBlock[0] have
their waitqueues properly initialized during txInit(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix general protection fault in __smc_diag_dump
The syzbot report a crash:
Oops: general protection fault, probably for non-canonical address 0xfbd5a5d5a0000003: 0000 [#1] SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0xdead4ead00000018-0xdead4ead0000001f]
CPU: 1 UID: 0 PID: 6949 Comm: syz.0.335 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
RIP: 0010:smc_diag_msg_common_fill net/smc/smc_diag.c:44 [inline]
RIP: 0010:__smc_diag_dump.constprop.0+0x3ca/0x2550 net/smc/smc_diag.c:89
Call Trace:
<TASK>
smc_diag_dump_proto+0x26d/0x420 net/smc/smc_diag.c:217
smc_diag_dump+0x27/0x90 net/smc/smc_diag.c:234
netlink_dump+0x539/0xd30 net/netlink/af_netlink.c:2327
__netlink_dump_start+0x6d6/0x990 net/netlink/af_netlink.c:2442
netlink_dump_start include/linux/netlink.h:341 [inline]
smc_diag_handler_dump+0x1f9/0x240 net/smc/smc_diag.c:251
__sock_diag_cmd net/core/sock_diag.c:249 [inline]
sock_diag_rcv_msg+0x438/0x790 net/core/sock_diag.c:285
netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x5a7/0x870 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg net/socket.c:729 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2614
___sys_sendmsg+0x134/0x1d0 net/socket.c:2668
__sys_sendmsg+0x16d/0x220 net/socket.c:2700
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4e0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The process like this:
(CPU1) | (CPU2)
---------------------------------|-------------------------------
inet_create() |
// init clcsock to NULL |
sk = sk_alloc() |
|
// unexpectedly change clcsock |
inet_init_csk_locks() |
|
// add sk to hash table |
smc_inet_init_sock() |
smc_sk_init() |
smc_hash_sk() |
| // traverse the hash table
| smc_diag_dump_proto
| __smc_diag_dump()
| // visit wrong clcsock
| smc_diag_msg_common_fill()
// alloc clcsock |
smc_create_clcsk |
sock_create_kern |
With CONFIG_DEBUG_LOCK_ALLOC=y, the smc->clcsock is unexpectedly changed
in inet_init_csk_locks(). The INET_PROTOSW_ICSK flag is no need by smc,
just remove it.
After removing the INET_PROTOSW_ICSK flag, this patch alse revert
commit 6fd27ea183c2 ("net/smc: fix lacks of icsk_syn_mss with IPPROTO_SMC")
to avoid casting smc_sock to inet_connection_sock. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix multifs mds auth caps issue
The mds auth caps check should also validate the
fsname along with the associated caps. Not doing
so would result in applying the mds auth caps of
one fs on to the other fs in a multifs ceph cluster.
The bug causes multiple issues w.r.t user
authentication, following is one such example.
Steps to Reproduce (on vstart cluster):
1. Create two file systems in a cluster, say 'fsname1' and 'fsname2'
2. Authorize read only permission to the user 'client.usr' on fs 'fsname1'
$ceph fs authorize fsname1 client.usr / r
3. Authorize read and write permission to the same user 'client.usr' on fs 'fsname2'
$ceph fs authorize fsname2 client.usr / rw
4. Update the keyring
$ceph auth get client.usr >> ./keyring
With above permssions for the user 'client.usr', following is the
expectation.
a. The 'client.usr' should be able to only read the contents
and not allowed to create or delete files on file system 'fsname1'.
b. The 'client.usr' should be able to read/write on file system 'fsname2'.
But, with this bug, the 'client.usr' is allowed to read/write on file
system 'fsname1'. See below.
5. Mount the file system 'fsname1' with the user 'client.usr'
$sudo bin/mount.ceph usr@.fsname1=/ /kmnt_fsname1_usr/
6. Try creating a file on file system 'fsname1' with user 'client.usr'. This
should fail but passes with this bug.
$touch /kmnt_fsname1_usr/file1
7. Mount the file system 'fsname1' with the user 'client.admin' and create a
file.
$sudo bin/mount.ceph admin@.fsname1=/ /kmnt_fsname1_admin
$echo "data" > /kmnt_fsname1_admin/admin_file1
8. Try removing an existing file on file system 'fsname1' with the user
'client.usr'. This shoudn't succeed but succeeds with the bug.
$rm -f /kmnt_fsname1_usr/admin_file1
For more information, please take a look at the corresponding mds/fuse patch
and tests added by looking into the tracker mentioned below.
v2: Fix a possible null dereference in doutc
v3: Don't store fsname from mdsmap, validate against
ceph_mount_options's fsname and use it
v4: Code refactor, better warning message and
fix possible compiler warning
[ Slava.Dubeyko: "fsname check failed" -> "fsname mismatch" ] |
| In the Linux kernel, the following vulnerability has been resolved:
amd/amdkfd: enhance kfd process check in switch partition
current switch partition only check if kfd_processes_table is empty.
kfd_prcesses_table entry is deleted in kfd_process_notifier_release, but
kfd_process tear down is in kfd_process_wq_release.
consider two processes:
Process A (workqueue) -> kfd_process_wq_release -> Access kfd_node member
Process B switch partition -> amdgpu_xcp_pre_partition_switch -> amdgpu_amdkfd_device_fini_sw
-> kfd_node tear down.
Process A and B may trigger a race as shown in dmesg log.
This patch is to resolve the race by adding an atomic kfd_process counter
kfd_processes_count, it increment as create kfd process, decrement as
finish kfd_process_wq_release.
v2: Put kfd_processes_count per kfd_dev, move decrement to kfd_process_destroy_pdds
and bug fix. (Philip Yang)
[3966658.307702] divide error: 0000 [#1] SMP NOPTI
[3966658.350818] i10nm_edac
[3966658.356318] CPU: 124 PID: 38435 Comm: kworker/124:0 Kdump: loaded Tainted
[3966658.356890] Workqueue: kfd_process_wq kfd_process_wq_release [amdgpu]
[3966658.362839] nfit
[3966658.366457] RIP: 0010:kfd_get_num_sdma_engines+0x17/0x40 [amdgpu]
[3966658.366460] Code: 00 00 e9 ac 81 02 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 0f 1f 44 00 00 48 8b 4f 08 48 8b b7 00 01 00 00 8b 81 58 26 03 00 99 <f7> be b8 01 00 00 80 b9 70 2e 00 00 00 74 0b 83 f8 02 ba 02 00 00
[3966658.380967] x86_pkg_temp_thermal
[3966658.391529] RSP: 0018:ffffc900a0edfdd8 EFLAGS: 00010246
[3966658.391531] RAX: 0000000000000008 RBX: ffff8974e593b800 RCX: ffff888645900000
[3966658.391531] RDX: 0000000000000000 RSI: ffff888129154400 RDI: ffff888129151c00
[3966658.391532] RBP: ffff8883ad79d400 R08: 0000000000000000 R09: ffff8890d2750af4
[3966658.391532] R10: 0000000000000018 R11: 0000000000000018 R12: 0000000000000000
[3966658.391533] R13: ffff8883ad79d400 R14: ffffe87ff662ba00 R15: ffff8974e593b800
[3966658.391533] FS: 0000000000000000(0000) GS:ffff88fe7f600000(0000) knlGS:0000000000000000
[3966658.391534] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3966658.391534] CR2: 0000000000d71000 CR3: 000000dd0e970004 CR4: 0000000002770ee0
[3966658.391535] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3966658.391535] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
[3966658.391536] PKRU: 55555554
[3966658.391536] Call Trace:
[3966658.391674] deallocate_sdma_queue+0x38/0xa0 [amdgpu]
[3966658.391762] process_termination_cpsch+0x1ed/0x480 [amdgpu]
[3966658.399754] intel_powerclamp
[3966658.402831] kfd_process_dequeue_from_all_devices+0x5b/0xc0 [amdgpu]
[3966658.402908] kfd_process_wq_release+0x1a/0x1a0 [amdgpu]
[3966658.410516] coretemp
[3966658.434016] process_one_work+0x1ad/0x380
[3966658.434021] worker_thread+0x49/0x310
[3966658.438963] kvm_intel
[3966658.446041] ? process_one_work+0x380/0x380
[3966658.446045] kthread+0x118/0x140
[3966658.446047] ? __kthread_bind_mask+0x60/0x60
[3966658.446050] ret_from_fork+0x1f/0x30
[3966658.446053] Modules linked in: kpatch_20765354(OEK)
[3966658.455310] kvm
[3966658.464534] mptcp_diag xsk_diag raw_diag unix_diag af_packet_diag netlink_diag udp_diag act_pedit act_mirred act_vlan cls_flower kpatch_21951273(OEK) kpatch_18424469(OEK) kpatch_19749756(OEK)
[3966658.473462] idxd_mdev
[3966658.482306] kpatch_17971294(OEK) sch_ingress xt_conntrack amdgpu(OE) amdxcp(OE) amddrm_buddy(OE) amd_sched(OE) amdttm(OE) amdkcl(OE) intel_ifs iptable_mangle tcm_loop target_core_pscsi tcp_diag target_core_file inet_diag target_core_iblock target_core_user target_core_mod coldpgs kpatch_18383292(OEK) ip6table_nat ip6table_filter ip6_tables ip_set_hash_ipportip ip_set_hash_ipportnet ip_set_hash_ipport ip_set_bitmap_port xt_comment iptable_nat nf_nat iptable_filter ip_tables ip_set ip_vs_sh ip_vs_wrr ip_vs_rr ip_vs nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 sn_core_odd(OE) i40e overlay binfmt_misc tun bonding(OE) aisqos(OE) aisqo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing
Theoretically it's an oopsable race, but I don't believe one can manage
to hit it on real hardware; might become doable on a KVM, but it still
won't be easy to attack.
Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of
put_unaligned_be64(), we can put that under ->d_lock and be done with that. |
| In the Linux kernel, the following vulnerability has been resolved:
codetag: debug: handle existing CODETAG_EMPTY in mark_objexts_empty for slabobj_ext
When alloc_slab_obj_exts() fails and then later succeeds in allocating a
slab extension vector, it calls handle_failed_objexts_alloc() to mark all
objects in the vector as empty. As a result all objects in this slab
(slabA) will have their extensions set to CODETAG_EMPTY.
Later on if this slabA is used to allocate a slabobj_ext vector for
another slab (slabB), we end up with the slabB->obj_exts pointing to a
slabobj_ext vector that itself has a non-NULL slabobj_ext equal to
CODETAG_EMPTY. When slabB gets freed, free_slab_obj_exts() is called to
free slabB->obj_exts vector.
free_slab_obj_exts() calls mark_objexts_empty(slabB->obj_exts) which will
generate a warning because it expects slabobj_ext vectors to have a NULL
obj_ext, not CODETAG_EMPTY.
Modify mark_objexts_empty() to skip the warning and setting the obj_ext
value if it's already set to CODETAG_EMPTY.
To quickly detect this WARN, I modified the code from
WARN_ON(slab_exts[offs].ref.ct) to BUG_ON(slab_exts[offs].ref.ct == 1);
We then obtained this message:
[21630.898561] ------------[ cut here ]------------
[21630.898596] kernel BUG at mm/slub.c:2050!
[21630.898611] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[21630.900372] Modules linked in: squashfs isofs vfio_iommu_type1
vhost_vsock vfio vhost_net vmw_vsock_virtio_transport_common vhost tap
vhost_iotlb iommufd vsock binfmt_misc nfsv3 nfs_acl nfs lockd grace
netfs tls rds dns_resolver tun brd overlay ntfs3 exfat btrfs
blake2b_generic xor xor_neon raid6_pq loop sctp ip6_udp_tunnel
udp_tunnel nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4
nf_tables rfkill ip_set sunrpc vfat fat joydev sg sch_fq_codel nfnetlink
virtio_gpu sr_mod cdrom drm_client_lib virtio_dma_buf drm_shmem_helper
drm_kms_helper drm ghash_ce backlight virtio_net virtio_blk virtio_scsi
net_failover virtio_console failover virtio_mmio dm_mirror
dm_region_hash dm_log dm_multipath dm_mod fuse i2c_dev virtio_pci
virtio_pci_legacy_dev virtio_pci_modern_dev virtio virtio_ring autofs4
aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject]
[21630.909177] CPU: 3 UID: 0 PID: 3787 Comm: kylin-process-m Kdump:
loaded Tainted: G W 6.18.0-rc1+ #74 PREEMPT(voluntary)
[21630.910495] Tainted: [W]=WARN
[21630.910867] Hardware name: QEMU KVM Virtual Machine, BIOS unknown
2/2/2022
[21630.911625] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[21630.912392] pc : __free_slab+0x228/0x250
[21630.912868] lr : __free_slab+0x18c/0x250[21630.913334] sp :
ffff8000a02f73e0
[21630.913830] x29: ffff8000a02f73e0 x28: fffffdffc43fc800 x27:
ffff0000c0011c40
[21630.914677] x26: ffff0000c000cac0 x25: ffff00010fe5e5f0 x24:
ffff000102199b40
[21630.915469] x23: 0000000000000003 x22: 0000000000000003 x21:
ffff0000c0011c40
[21630.916259] x20: fffffdffc4086600 x19: fffffdffc43fc800 x18:
0000000000000000
[21630.917048] x17: 0000000000000000 x16: 0000000000000000 x15:
0000000000000000
[21630.917837] x14: 0000000000000000 x13: 0000000000000000 x12:
ffff70001405ee66
[21630.918640] x11: 1ffff0001405ee65 x10: ffff70001405ee65 x9 :
ffff800080a295dc
[21630.919442] x8 : ffff8000a02f7330 x7 : 0000000000000000 x6 :
0000000000003000
[21630.920232] x5 : 0000000024924925 x4 : 0000000000000001 x3 :
0000000000000007
[21630.921021] x2 : 0000000000001b40 x1 : 000000000000001f x0 :
0000000000000001
[21630.921810] Call trace:
[21630.922130] __free_slab+0x228/0x250 (P)
[21630.922669] free_slab+0x38/0x118
[21630.923079] free_to_partial_list+0x1d4/0x340
[21630.923591] __slab_free+0x24c/0x348
[21630.924024] ___cache_free+0xf0/0x110
[21630.924468] qlist_free_all+0x78/0x130
[21630.924922] kasan_quarantine_reduce+0x11
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Synchronize Dead CT worker with unbind
Cancel and wait for any Dead CT worker to complete before continuing
with device unbinding. Else the worker will end up using resources freed
by the undind operation.
(cherry picked from commit 492671339114e376aaa38626d637a2751cdef263) |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Do not warn if the page is already tagged in copy_highpage()
The arm64 copy_highpage() assumes that the destination page is newly
allocated and not MTE-tagged (PG_mte_tagged unset) and warns
accordingly. However, following commit 060913999d7a ("mm: migrate:
support poisoned recover from migrate folio"), folio_mc_copy() is called
before __folio_migrate_mapping(). If the latter fails (-EAGAIN), the
copy will be done again to the same destination page. Since
copy_highpage() already set the PG_mte_tagged flag, this second copy
will warn.
Replace the WARN_ON_ONCE(page already tagged) in the arm64
copy_highpage() with a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode
Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out
of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/atom: Check kcalloc() for WS buffer in amdgpu_atom_execute_table_locked()
kcalloc() may fail. When WS is non-zero and allocation fails, ectx.ws
remains NULL while ectx.ws_size is set, leading to a potential NULL
pointer dereference in atom_get_src_int() when accessing WS entries.
Return -ENOMEM on allocation failure to avoid the NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Cache streams targeting link when performing LT automation
[WHY]
Last LT automation update can cause crash by referencing current_state and
calling into dc_update_planes_and_stream which may clobber current_state.
[HOW]
Cache relevant stream pointers and iterate through them instead of relying
on the current_state. |
| In the Linux kernel, the following vulnerability has been resolved:
sysfs: check visibility before changing group attribute ownership
Since commit 0c17270f9b92 ("net: sysfs: Implement is_visible for
phys_(port_id, port_name, switch_id)"), __dev_change_net_namespace() can
hit WARN_ON() when trying to change owner of a file that isn't visible.
See the trace below:
WARNING: CPU: 6 PID: 2938 at net/core/dev.c:12410 __dev_change_net_namespace+0xb89/0xc30
CPU: 6 UID: 0 PID: 2938 Comm: incusd Not tainted 6.17.1-1-mainline #1 PREEMPT(full) 4b783b4a638669fb644857f484487d17cb45ed1f
Hardware name: Framework Laptop 13 (AMD Ryzen 7040Series)/FRANMDCP07, BIOS 03.07 02/19/2025
RIP: 0010:__dev_change_net_namespace+0xb89/0xc30
[...]
Call Trace:
<TASK>
? if6_seq_show+0x30/0x50
do_setlink.isra.0+0xc7/0x1270
? __nla_validate_parse+0x5c/0xcc0
? security_capable+0x94/0x1a0
rtnl_newlink+0x858/0xc20
? update_curr+0x8e/0x1c0
? update_entity_lag+0x71/0x80
? sched_balance_newidle+0x358/0x450
? psi_task_switch+0x113/0x2a0
? __pfx_rtnl_newlink+0x10/0x10
rtnetlink_rcv_msg+0x346/0x3e0
? sched_clock+0x10/0x30
? __pfx_rtnetlink_rcv_msg+0x10/0x10
netlink_rcv_skb+0x59/0x110
netlink_unicast+0x285/0x3c0
? __alloc_skb+0xdb/0x1a0
netlink_sendmsg+0x20d/0x430
____sys_sendmsg+0x39f/0x3d0
? import_iovec+0x2f/0x40
___sys_sendmsg+0x99/0xe0
__sys_sendmsg+0x8a/0xf0
do_syscall_64+0x81/0x970
? __sys_bind+0xe3/0x110
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? sock_alloc_file+0x63/0xc0
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? alloc_fd+0x12e/0x190
? put_unused_fd+0x2a/0x70
? do_sys_openat2+0xa2/0xe0
? syscall_exit_work+0x143/0x1b0
? do_syscall_64+0x244/0x970
? exc_page_fault+0x7e/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
Fix this by checking is_visible() before trying to touch the attribute. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: rockchip-sfc: Fix DMA-API usage
Use DMA-API dma_map_single() call for getting the DMA address of the
transfer buffer instead of hacking with virt_to_phys().
This fixes the following DMA-API debug warning:
------------[ cut here ]------------
DMA-API: rockchip-sfc fe300000.spi: device driver tries to sync DMA memory it has not allocated [device address=0x000000000cf70000] [size=288 bytes]
WARNING: kernel/dma/debug.c:1106 at check_sync+0x1d8/0x690, CPU#2: systemd-udevd/151
Modules linked in: ...
Hardware name: Hardkernel ODROID-M1 (DT)
pstate: 604000c9 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : check_sync+0x1d8/0x690
lr : check_sync+0x1d8/0x690
..
Call trace:
check_sync+0x1d8/0x690 (P)
debug_dma_sync_single_for_cpu+0x84/0x8c
__dma_sync_single_for_cpu+0x88/0x234
rockchip_sfc_exec_mem_op+0x4a0/0x798 [spi_rockchip_sfc]
spi_mem_exec_op+0x408/0x498
spi_nor_read_data+0x170/0x184
spi_nor_read_sfdp+0x74/0xe4
spi_nor_parse_sfdp+0x120/0x11f0
spi_nor_sfdp_init_params_deprecated+0x3c/0x8c
spi_nor_scan+0x690/0xf88
spi_nor_probe+0xe4/0x304
spi_mem_probe+0x6c/0xa8
spi_probe+0x94/0xd4
really_probe+0xbc/0x298
... |
| In the Linux kernel, the following vulnerability has been resolved:
fs: ext4: change GFP_KERNEL to GFP_NOFS to avoid deadlock
The parent function ext4_xattr_inode_lookup_create already uses GFP_NOFS for memory alloction, so the function ext4_xattr_inode_cache_find should use same gfp_flag. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: make send_packet() more robust
syzbot is reporting that imon has three problems which result in
hung tasks due to forever holding device lock [1].
First problem is that when usb_rx_callback_intf0() once got -EPROTO error
after ictx->dev_present_intf0 became true, usb_rx_callback_intf0()
resubmits urb after printk(), and resubmitted urb causes
usb_rx_callback_intf0() to again get -EPROTO error. This results in
printk() flooding (RCU stalls).
Alan Stern commented [2] that
In theory it's okay to resubmit _if_ the driver has a robust
error-recovery scheme (such as giving up after some fixed limit on the
number of errors or after some fixed time has elapsed, perhaps with a
time delay to prevent a flood of errors). Most drivers don't bother to
do this; they simply give up right away. This makes them more
vulnerable to short-term noise interference during USB transfers, but in
reality such interference is quite rare. There's nothing really wrong
with giving up right away.
but imon has a poor error-recovery scheme which just retries forever;
this behavior should be fixed.
Since I'm not sure whether it is safe for imon users to give up upon any
error code, this patch takes care of only union of error codes chosen from
modules in drivers/media/rc/ directory which handle -EPROTO error (i.e.
ir_toy, mceusb and igorplugusb).
Second problem is that when usb_rx_callback_intf0() once got -EPROTO error
before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always
resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge
hardware after early callbacks"). Move the ictx->dev_present_intf0 test
introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes
until intf configured") to immediately before imon_incoming_packet(), or
the first problem explained above happens without printk() flooding (i.e.
hung task).
Third problem is that when usb_rx_callback_intf0() is not called for some
reason (e.g. flaky hardware; the reproducer for this problem sometimes
prevents usb_rx_callback_intf0() from being called),
wait_for_completion_interruptible() in send_packet() never returns (i.e.
hung task). As a workaround for such situation, change send_packet() to
wait for completion with timeout of 10 seconds. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Do not kfree() devres managed rdev
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling
kfree() on it.
This fixes things exploding if the driver probe fails and devres cleans up
the rdev after we already free'd it.
(cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b) |
| In the Linux kernel, the following vulnerability has been resolved:
udp_tunnel: use netdev_warn() instead of netdev_WARN()
netdev_WARN() uses WARN/WARN_ON to print a backtrace along with
file and line information. In this case, udp_tunnel_nic_register()
returning an error is just a failed operation, not a kernel bug.
udp_tunnel_nic_register() can fail due to a memory allocation
failure (kzalloc() or udp_tunnel_nic_alloc()).
This is a normal runtime error and not a kernel bug.
Replace netdev_WARN() with netdev_warn() accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: remove two invalid BUG_ON()s
Those can be triggered trivially by userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix KMSAN uninit-value issue in hfsplus_delete_cat()
The syzbot reported issue in hfsplus_delete_cat():
[ 70.682285][ T9333] =====================================================
[ 70.682943][ T9333] BUG: KMSAN: uninit-value in hfsplus_subfolders_dec+0x1d7/0x220
[ 70.683640][ T9333] hfsplus_subfolders_dec+0x1d7/0x220
[ 70.684141][ T9333] hfsplus_delete_cat+0x105d/0x12b0
[ 70.684621][ T9333] hfsplus_rmdir+0x13d/0x310
[ 70.685048][ T9333] vfs_rmdir+0x5ba/0x810
[ 70.685447][ T9333] do_rmdir+0x964/0xea0
[ 70.685833][ T9333] __x64_sys_rmdir+0x71/0xb0
[ 70.686260][ T9333] x64_sys_call+0xcd8/0x3cf0
[ 70.686695][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.687119][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.687646][ T9333]
[ 70.687856][ T9333] Uninit was stored to memory at:
[ 70.688311][ T9333] hfsplus_subfolders_inc+0x1c2/0x1d0
[ 70.688779][ T9333] hfsplus_create_cat+0x148e/0x1800
[ 70.689231][ T9333] hfsplus_mknod+0x27f/0x600
[ 70.689730][ T9333] hfsplus_mkdir+0x5a/0x70
[ 70.690146][ T9333] vfs_mkdir+0x483/0x7a0
[ 70.690545][ T9333] do_mkdirat+0x3f2/0xd30
[ 70.690944][ T9333] __x64_sys_mkdir+0x9a/0xf0
[ 70.691380][ T9333] x64_sys_call+0x2f89/0x3cf0
[ 70.691816][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.692229][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.692773][ T9333]
[ 70.692990][ T9333] Uninit was stored to memory at:
[ 70.693469][ T9333] hfsplus_subfolders_inc+0x1c2/0x1d0
[ 70.693960][ T9333] hfsplus_create_cat+0x148e/0x1800
[ 70.694438][ T9333] hfsplus_fill_super+0x21c1/0x2700
[ 70.694911][ T9333] mount_bdev+0x37b/0x530
[ 70.695320][ T9333] hfsplus_mount+0x4d/0x60
[ 70.695729][ T9333] legacy_get_tree+0x113/0x2c0
[ 70.696167][ T9333] vfs_get_tree+0xb3/0x5c0
[ 70.696588][ T9333] do_new_mount+0x73e/0x1630
[ 70.697013][ T9333] path_mount+0x6e3/0x1eb0
[ 70.697425][ T9333] __se_sys_mount+0x733/0x830
[ 70.697857][ T9333] __x64_sys_mount+0xe4/0x150
[ 70.698269][ T9333] x64_sys_call+0x2691/0x3cf0
[ 70.698704][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.699117][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.699730][ T9333]
[ 70.699946][ T9333] Uninit was created at:
[ 70.700378][ T9333] __alloc_pages_noprof+0x714/0xe60
[ 70.700843][ T9333] alloc_pages_mpol_noprof+0x2a2/0x9b0
[ 70.701331][ T9333] alloc_pages_noprof+0xf8/0x1f0
[ 70.701774][ T9333] allocate_slab+0x30e/0x1390
[ 70.702194][ T9333] ___slab_alloc+0x1049/0x33a0
[ 70.702635][ T9333] kmem_cache_alloc_lru_noprof+0x5ce/0xb20
[ 70.703153][ T9333] hfsplus_alloc_inode+0x5a/0xd0
[ 70.703598][ T9333] alloc_inode+0x82/0x490
[ 70.703984][ T9333] iget_locked+0x22e/0x1320
[ 70.704428][ T9333] hfsplus_iget+0x5c/0xba0
[ 70.704827][ T9333] hfsplus_btree_open+0x135/0x1dd0
[ 70.705291][ T9333] hfsplus_fill_super+0x1132/0x2700
[ 70.705776][ T9333] mount_bdev+0x37b/0x530
[ 70.706171][ T9333] hfsplus_mount+0x4d/0x60
[ 70.706579][ T9333] legacy_get_tree+0x113/0x2c0
[ 70.707019][ T9333] vfs_get_tree+0xb3/0x5c0
[ 70.707444][ T9333] do_new_mount+0x73e/0x1630
[ 70.707865][ T9333] path_mount+0x6e3/0x1eb0
[ 70.708270][ T9333] __se_sys_mount+0x733/0x830
[ 70.708711][ T9333] __x64_sys_mount+0xe4/0x150
[ 70.709158][ T9333] x64_sys_call+0x2691/0x3cf0
[ 70.709630][ T9333] do_syscall_64+0xd9/0x1d0
[ 70.710053][ T9333] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.710611][ T9333]
[ 70.710842][ T9333] CPU: 3 UID: 0 PID: 9333 Comm: repro Not tainted 6.12.0-rc6-dirty #17
[ 70.711568][ T9333] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.712490][ T9333] =====================================================
[ 70.713085][ T9333] Disabling lock debugging due to kernel taint
[ 70.713618][ T9333] Kernel panic - not syncing: kmsan.panic set ...
[ 70.714159][ T9333]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: validate record offset in hfsplus_bmap_alloc
hfsplus_bmap_alloc can trigger a crash if a
record offset or length is larger than node_size
[ 15.264282] BUG: KASAN: slab-out-of-bounds in hfsplus_bmap_alloc+0x887/0x8b0
[ 15.265192] Read of size 8 at addr ffff8881085ca188 by task test/183
[ 15.265949]
[ 15.266163] CPU: 0 UID: 0 PID: 183 Comm: test Not tainted 6.17.0-rc2-gc17b750b3ad9 #14 PREEMPT(voluntary)
[ 15.266165] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 15.266167] Call Trace:
[ 15.266168] <TASK>
[ 15.266169] dump_stack_lvl+0x53/0x70
[ 15.266173] print_report+0xd0/0x660
[ 15.266181] kasan_report+0xce/0x100
[ 15.266185] hfsplus_bmap_alloc+0x887/0x8b0
[ 15.266208] hfs_btree_inc_height.isra.0+0xd5/0x7c0
[ 15.266217] hfsplus_brec_insert+0x870/0xb00
[ 15.266222] __hfsplus_ext_write_extent+0x428/0x570
[ 15.266225] __hfsplus_ext_cache_extent+0x5e/0x910
[ 15.266227] hfsplus_ext_read_extent+0x1b2/0x200
[ 15.266233] hfsplus_file_extend+0x5a7/0x1000
[ 15.266237] hfsplus_get_block+0x12b/0x8c0
[ 15.266238] __block_write_begin_int+0x36b/0x12c0
[ 15.266251] block_write_begin+0x77/0x110
[ 15.266252] cont_write_begin+0x428/0x720
[ 15.266259] hfsplus_write_begin+0x51/0x100
[ 15.266262] cont_write_begin+0x272/0x720
[ 15.266270] hfsplus_write_begin+0x51/0x100
[ 15.266274] generic_perform_write+0x321/0x750
[ 15.266285] generic_file_write_iter+0xc3/0x310
[ 15.266289] __kernel_write_iter+0x2fd/0x800
[ 15.266296] dump_user_range+0x2ea/0x910
[ 15.266301] elf_core_dump+0x2a94/0x2ed0
[ 15.266320] vfs_coredump+0x1d85/0x45e0
[ 15.266349] get_signal+0x12e3/0x1990
[ 15.266357] arch_do_signal_or_restart+0x89/0x580
[ 15.266362] irqentry_exit_to_user_mode+0xab/0x110
[ 15.266364] asm_exc_page_fault+0x26/0x30
[ 15.266366] RIP: 0033:0x41bd35
[ 15.266367] Code: bc d1 f3 0f 7f 27 f3 0f 7f 6f 10 f3 0f 7f 77 20 f3 0f 7f 7f 30 49 83 c0 0f 49 29 d0 48 8d 7c 17 31 e9 9f 0b 00 00 66 0f ef c0 <f3> 0f 6f 0e f3 0f 6f 56 10 66 0f 74 c1 66 0f d7 d0 49 83 f8f
[ 15.266369] RSP: 002b:00007ffc9e62d078 EFLAGS: 00010283
[ 15.266371] RAX: 00007ffc9e62d100 RBX: 0000000000000000 RCX: 0000000000000000
[ 15.266372] RDX: 00000000000000e0 RSI: 0000000000000000 RDI: 00007ffc9e62d100
[ 15.266373] RBP: 0000400000000040 R08: 00000000000000e0 R09: 0000000000000000
[ 15.266374] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 15.266375] R13: 0000000000000000 R14: 0000000000000000 R15: 0000400000000000
[ 15.266376] </TASK>
When calling hfsplus_bmap_alloc to allocate a free node, this function
first retrieves the bitmap from header node and map node using node->page
together with the offset and length from hfs_brec_lenoff
```
len = hfs_brec_lenoff(node, 2, &off16);
off = off16;
off += node->page_offset;
pagep = node->page + (off >> PAGE_SHIFT);
data = kmap_local_page(*pagep);
```
However, if the retrieved offset or length is invalid(i.e. exceeds
node_size), the code may end up accessing pages outside the allocated
range for this node.
This patch adds proper validation of both offset and length before use,
preventing out-of-bounds page access. Move is_bnode_offset_valid and
check_and_correct_requested_length to hfsplus_fs.h, as they may be
required by other functions. |