CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp.
syzkaller reported [0] memory leaks of an UDP socket and ZEROCOPY
skbs. We can reproduce the problem with these sequences:
sk = socket(AF_INET, SOCK_DGRAM, 0)
sk.setsockopt(SOL_SOCKET, SO_TIMESTAMPING, SOF_TIMESTAMPING_TX_SOFTWARE)
sk.setsockopt(SOL_SOCKET, SO_ZEROCOPY, 1)
sk.sendto(b'', MSG_ZEROCOPY, ('127.0.0.1', 53))
sk.close()
sendmsg() calls msg_zerocopy_alloc(), which allocates a skb, sets
skb->cb->ubuf.refcnt to 1, and calls sock_hold(). Here, struct
ubuf_info_msgzc indirectly holds a refcnt of the socket. When the
skb is sent, __skb_tstamp_tx() clones it and puts the clone into
the socket's error queue with the TX timestamp.
When the original skb is received locally, skb_copy_ubufs() calls
skb_unclone(), and pskb_expand_head() increments skb->cb->ubuf.refcnt.
This additional count is decremented while freeing the skb, but struct
ubuf_info_msgzc still has a refcnt, so __msg_zerocopy_callback() is
not called.
The last refcnt is not released unless we retrieve the TX timestamped
skb by recvmsg(). Since we clear the error queue in inet_sock_destruct()
after the socket's refcnt reaches 0, there is a circular dependency.
If we close() the socket holding such skbs, we never call sock_put()
and leak the count, sk, and skb.
TCP has the same problem, and commit e0c8bccd40fc ("net: stream:
purge sk_error_queue in sk_stream_kill_queues()") tried to fix it
by calling skb_queue_purge() during close(). However, there is a
small chance that skb queued in a qdisc or device could be put
into the error queue after the skb_queue_purge() call.
In __skb_tstamp_tx(), the cloned skb should not have a reference
to the ubuf to remove the circular dependency, but skb_clone() does
not call skb_copy_ubufs() for zerocopy skb. So, we need to call
skb_orphan_frags_rx() for the cloned skb to call skb_copy_ubufs().
[0]:
BUG: memory leak
unreferenced object 0xffff88800c6d2d00 (size 1152):
comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 cd af e8 81 00 00 00 00 ................
02 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............
backtrace:
[<0000000055636812>] sk_prot_alloc+0x64/0x2a0 net/core/sock.c:2024
[<0000000054d77b7a>] sk_alloc+0x3b/0x800 net/core/sock.c:2083
[<0000000066f3c7e0>] inet_create net/ipv4/af_inet.c:319 [inline]
[<0000000066f3c7e0>] inet_create+0x31e/0xe40 net/ipv4/af_inet.c:245
[<000000009b83af97>] __sock_create+0x2ab/0x550 net/socket.c:1515
[<00000000b9b11231>] sock_create net/socket.c:1566 [inline]
[<00000000b9b11231>] __sys_socket_create net/socket.c:1603 [inline]
[<00000000b9b11231>] __sys_socket_create net/socket.c:1588 [inline]
[<00000000b9b11231>] __sys_socket+0x138/0x250 net/socket.c:1636
[<000000004fb45142>] __do_sys_socket net/socket.c:1649 [inline]
[<000000004fb45142>] __se_sys_socket net/socket.c:1647 [inline]
[<000000004fb45142>] __x64_sys_socket+0x73/0xb0 net/socket.c:1647
[<0000000066999e0e>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<0000000066999e0e>] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
[<0000000017f238c1>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
BUG: memory leak
unreferenced object 0xffff888017633a00 (size 240):
comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 2d 6d 0c 80 88 ff ff .........-m.....
backtrace:
[<000000002b1c4368>] __alloc_skb+0x229/0x320 net/core/skbuff.c:497
[<00000000143579a6>] alloc_skb include/linux/skbuff.h:1265 [inline]
[<00000000143579a6>] sock_omalloc+0xaa/0x190 net/core/sock.c:2596
[<00000000be626478>] msg_zerocopy_alloc net/core/skbuff.c:1294 [inline]
[<00000000be626478>]
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw: Fix PM runtime leakage in am65_cpsw_nuss_ndo_slave_open()
Ensure pm_runtime_put() is issued in error path. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/hpre - fix resource leak in remove process
In hpre_remove(), when the disable operation of qm sriov failed,
the following logic should continue to be executed to release the
remaining resources that have been allocated, instead of returning
directly, otherwise there will be resource leakage. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix memory leak in rtw_usb_probe()
drivers/net/wireless/realtek/rtw88/usb.c:876 rtw_usb_probe()
warn: 'hw' from ieee80211_alloc_hw() not released on lines: 811
Fix this by modifying return to a goto statement. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Fix slab-out-of-bounds in ses_intf_remove()
A fix for:
BUG: KASAN: slab-out-of-bounds in ses_intf_remove+0x23f/0x270 [ses]
Read of size 8 at addr ffff88a10d32e5d8 by task rmmod/12013
When edev->components is zero, accessing edev->component[0] members is
wrong. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix deinitialization of firmware resources
Currently, in ath11k_ahb_fw_resources_init(), iommu domain
mapping is done only for the chipsets having fixed firmware
memory. Also, for such chipsets, mapping is done only if it
does not have TrustZone support.
During deinitialization, only if TrustZone support is not there,
iommu is unmapped back. However, for non fixed firmware memory
chipsets, TrustZone support is not there and this makes the
condition check to true and it tries to unmap the memory which
was not mapped during initialization.
This leads to the following trace -
[ 83.198790] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
[ 83.259537] Modules linked in: ath11k_ahb ath11k qmi_helpers
.. snip ..
[ 83.280286] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 83.287228] pc : __iommu_unmap+0x30/0x140
[ 83.293907] lr : iommu_unmap+0x5c/0xa4
[ 83.298072] sp : ffff80000b3abad0
.. snip ..
[ 83.369175] Call trace:
[ 83.376282] __iommu_unmap+0x30/0x140
[ 83.378541] iommu_unmap+0x5c/0xa4
[ 83.382360] ath11k_ahb_fw_resource_deinit.part.12+0x2c/0xac [ath11k_ahb]
[ 83.385666] ath11k_ahb_free_resources+0x140/0x17c [ath11k_ahb]
[ 83.392521] ath11k_ahb_shutdown+0x34/0x40 [ath11k_ahb]
[ 83.398248] platform_shutdown+0x20/0x2c
[ 83.403455] device_shutdown+0x16c/0x1c4
[ 83.407621] kernel_restart_prepare+0x34/0x3c
[ 83.411529] kernel_restart+0x14/0x74
[ 83.415781] __do_sys_reboot+0x1c4/0x22c
[ 83.419427] __arm64_sys_reboot+0x1c/0x24
[ 83.423420] invoke_syscall+0x44/0xfc
[ 83.427326] el0_svc_common.constprop.3+0xac/0xe8
[ 83.430974] do_el0_svc+0xa0/0xa8
[ 83.435659] el0_svc+0x1c/0x44
[ 83.438957] el0t_64_sync_handler+0x60/0x144
[ 83.441910] el0t_64_sync+0x15c/0x160
[ 83.446343] Code: aa0103f4 f9400001 f90027a1 d2800001 (f94006a0)
[ 83.449903] ---[ end trace 0000000000000000 ]---
This can be reproduced by probing an AHB chipset which is not
having a fixed memory region. During reboot (or rmmod) trace
can be seen.
Fix this issue by adding a condition check on firmware fixed memory
hw_param as done in the counter initialization function.
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: Fix memory leak in rtw88_usb
Kmemleak shows the following leak arising from routine in the usb
probe routine:
unreferenced object 0xffff895cb29bba00 (size 512):
comm "(udev-worker)", pid 534, jiffies 4294903932 (age 102751.088s)
hex dump (first 32 bytes):
77 30 30 30 00 00 00 00 02 2f 2d 2b 30 00 00 00 w000...../-+0...
02 00 2a 28 00 00 00 00 ff 55 ff ff ff 00 00 00 ..*(.....U......
backtrace:
[<ffffffff9265fa36>] kmalloc_trace+0x26/0x90
[<ffffffffc17eec41>] rtw_usb_probe+0x2f1/0x680 [rtw_usb]
[<ffffffffc03e19fd>] usb_probe_interface+0xdd/0x2e0 [usbcore]
[<ffffffff92b4f2fe>] really_probe+0x18e/0x3d0
[<ffffffff92b4f5b8>] __driver_probe_device+0x78/0x160
[<ffffffff92b4f6bf>] driver_probe_device+0x1f/0x90
[<ffffffff92b4f8df>] __driver_attach+0xbf/0x1b0
[<ffffffff92b4d350>] bus_for_each_dev+0x70/0xc0
[<ffffffff92b4e51e>] bus_add_driver+0x10e/0x210
[<ffffffff92b50935>] driver_register+0x55/0xf0
[<ffffffffc03e0708>] usb_register_driver+0x88/0x140 [usbcore]
[<ffffffff92401153>] do_one_initcall+0x43/0x210
[<ffffffff9254f42a>] do_init_module+0x4a/0x200
[<ffffffff92551d1c>] __do_sys_finit_module+0xac/0x120
[<ffffffff92ee6626>] do_syscall_64+0x56/0x80
[<ffffffff9300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
The leak was verified to be real by unloading the driver, which resulted
in a dangling pointer to the allocation.
The allocated memory is freed in rtw_usb_intf_deinit(). |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Use raw_smp_processor_id() instead of smp_processor_id()
The following call trace was observed:
localhost kernel: nvme nvme0: NVME-FC{0}: controller connect complete
localhost kernel: BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u129:4/75092
localhost kernel: nvme nvme0: NVME-FC{0}: new ctrl: NQN "nqn.1992-08.com.netapp:sn.b42d198afb4d11ecad6d00a098d6abfa:subsystem.PR_Channel2022_RH84_subsystem_291"
localhost kernel: caller is qla_nvme_post_cmd+0x216/0x1380 [qla2xxx]
localhost kernel: CPU: 6 PID: 75092 Comm: kworker/u129:4 Kdump: loaded Tainted: G B W OE --------- --- 5.14.0-70.22.1.el9_0.x86_64+debug #1
localhost kernel: Hardware name: HPE ProLiant XL420 Gen10/ProLiant XL420 Gen10, BIOS U39 01/13/2022
localhost kernel: Workqueue: nvme-wq nvme_async_event_work [nvme_core]
localhost kernel: Call Trace:
localhost kernel: dump_stack_lvl+0x57/0x7d
localhost kernel: check_preemption_disabled+0xc8/0xd0
localhost kernel: qla_nvme_post_cmd+0x216/0x1380 [qla2xxx]
Use raw_smp_processor_id() instead of smp_processor_id().
Also use queue_work() across the driver instead of queue_work_on() thus
avoiding usage of smp_processor_id() when CONFIG_DEBUG_PREEMPT is enabled. |
In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: Fix leak in devfreq_dev_release()
srcu_init_notifier_head() allocates resources that need to be released
with a srcu_cleanup_notifier_head() call.
Reported by kmemleak. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: pcie: Fix integer overflow in iwl_write_to_user_buf
An integer overflow occurs in the iwl_write_to_user_buf() function,
which is called by the iwl_dbgfs_monitor_data_read() function.
static bool iwl_write_to_user_buf(char __user *user_buf, ssize_t count,
void *buf, ssize_t *size,
ssize_t *bytes_copied)
{
int buf_size_left = count - *bytes_copied;
buf_size_left = buf_size_left - (buf_size_left % sizeof(u32));
if (*size > buf_size_left)
*size = buf_size_left;
If the user passes a SIZE_MAX value to the "ssize_t count" parameter,
the ssize_t count parameter is assigned to "int buf_size_left".
Then compare "*size" with "buf_size_left" . Here, "buf_size_left" is a
negative number, so "*size" is assigned "buf_size_left" and goes into
the third argument of the copy_to_user function, causing a heap overflow.
This is not a security vulnerability because iwl_dbgfs_monitor_data_read()
is a debugfs operation with 0400 privileges. |
In the Linux kernel, the following vulnerability has been resolved:
null_blk: fix poll request timeout handling
When doing io_uring benchmark on /dev/nullb0, it's easy to crash the
kernel if poll requests timeout triggered, as reported by David. [1]
BUG: kernel NULL pointer dereference, address: 0000000000000008
Workqueue: kblockd blk_mq_timeout_work
RIP: 0010:null_timeout_rq+0x4e/0x91
Call Trace:
? null_timeout_rq+0x4e/0x91
blk_mq_handle_expired+0x31/0x4b
bt_iter+0x68/0x84
? bt_tags_iter+0x81/0x81
__sbitmap_for_each_set.constprop.0+0xb0/0xf2
? __blk_mq_complete_request_remote+0xf/0xf
bt_for_each+0x46/0x64
? __blk_mq_complete_request_remote+0xf/0xf
? percpu_ref_get_many+0xc/0x2a
blk_mq_queue_tag_busy_iter+0x14d/0x18e
blk_mq_timeout_work+0x95/0x127
process_one_work+0x185/0x263
worker_thread+0x1b5/0x227
This is indeed a race problem between null_timeout_rq() and null_poll().
null_poll() null_timeout_rq()
spin_lock(&nq->poll_lock)
list_splice_init(&nq->poll_list, &list)
spin_unlock(&nq->poll_lock)
while (!list_empty(&list))
req = list_first_entry()
list_del_init()
...
blk_mq_add_to_batch()
// req->rq_next = NULL
spin_lock(&nq->poll_lock)
// rq->queuelist->next == NULL
list_del_init(&rq->queuelist)
spin_unlock(&nq->poll_lock)
Fix these problems by setting requests state to MQ_RQ_COMPLETE under
nq->poll_lock protection, in which null_timeout_rq() can safely detect
this race and early return.
Note this patch just fix the kernel panic when request timeout happen.
[1] https://lore.kernel.org/all/3893581.1691785261@warthog.procyon.org.uk/ |
In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix memory leak in tb_handle_dp_bandwidth_request()
The memory allocated in tb_queue_dp_bandwidth_request() needs to be
released once the request is handled to avoid leaking it. |
In the Linux kernel, the following vulnerability has been resolved:
cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex
syzbot is reporting circular locking dependency between cpu_hotplug_lock
and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core
freezer logic") replaced atomic_inc() in freezer_apply_state() with
static_branch_inc() which holds cpu_hotplug_lock.
cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex
cgroup_file_write() {
cgroup_procs_write() {
__cgroup_procs_write() {
cgroup_procs_write_start() {
cgroup_attach_lock() {
cpus_read_lock() {
percpu_down_read(&cpu_hotplug_lock);
}
percpu_down_write(&cgroup_threadgroup_rwsem);
}
}
cgroup_attach_task() {
cgroup_migrate() {
cgroup_migrate_execute() {
freezer_attach() {
mutex_lock(&freezer_mutex);
(...snipped...)
}
}
}
}
(...snipped...)
}
}
}
freezer_mutex => cpu_hotplug_lock
cgroup_file_write() {
freezer_write() {
freezer_change_state() {
mutex_lock(&freezer_mutex);
freezer_apply_state() {
static_branch_inc(&freezer_active) {
static_key_slow_inc() {
cpus_read_lock();
static_key_slow_inc_cpuslocked();
cpus_read_unlock();
}
}
}
mutex_unlock(&freezer_mutex);
}
}
}
Swap locking order by moving cpus_read_lock() in freezer_apply_state()
to before mutex_lock(&freezer_mutex) in freezer_change_state(). |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix handling of lrbp->cmd
ufshcd_queuecommand() may be called two times in a row for a SCSI command
before it is completed. Hence make the following changes:
- In the functions that submit a command, do not check the old value of
lrbp->cmd nor clear lrbp->cmd in error paths.
- In ufshcd_release_scsi_cmd(), do not clear lrbp->cmd.
See also scsi_send_eh_cmnd().
This commit prevents that the following appears if a command times out:
WARNING: at drivers/ufs/core/ufshcd.c:2965 ufshcd_queuecommand+0x6f8/0x9a8
Call trace:
ufshcd_queuecommand+0x6f8/0x9a8
scsi_send_eh_cmnd+0x2c0/0x960
scsi_eh_test_devices+0x100/0x314
scsi_eh_ready_devs+0xd90/0x114c
scsi_error_handler+0x2b4/0xb70
kthread+0x16c/0x1e0 |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix hci_suspend_sync crash
If hci_unregister_dev() frees the hci_dev object but hci_suspend_notifier
may still be accessing it, it can cause the program to crash.
Here's the call trace:
<4>[102152.653246] Call Trace:
<4>[102152.653254] hci_suspend_sync+0x109/0x301 [bluetooth]
<4>[102152.653259] hci_suspend_dev+0x78/0xcd [bluetooth]
<4>[102152.653263] hci_suspend_notifier+0x42/0x7a [bluetooth]
<4>[102152.653268] notifier_call_chain+0x43/0x6b
<4>[102152.653271] __blocking_notifier_call_chain+0x48/0x69
<4>[102152.653273] __pm_notifier_call_chain+0x22/0x39
<4>[102152.653276] pm_suspend+0x287/0x57c
<4>[102152.653278] state_store+0xae/0xe5
<4>[102152.653281] kernfs_fop_write+0x109/0x173
<4>[102152.653284] __vfs_write+0x16f/0x1a2
<4>[102152.653287] ? selinux_file_permission+0xca/0x16f
<4>[102152.653289] ? security_file_permission+0x36/0x109
<4>[102152.653291] vfs_write+0x114/0x21d
<4>[102152.653293] __x64_sys_write+0x7b/0xdb
<4>[102152.653296] do_syscall_64+0x59/0x194
<4>[102152.653299] entry_SYSCALL_64_after_hwframe+0x5c/0xc1
This patch holds the reference count of the hci_dev object while
processing it in hci_suspend_notifier to avoid potential crash
caused by the race condition. |
In the Linux kernel, the following vulnerability has been resolved:
virtio-mmio: don't break lifecycle of vm_dev
vm_dev has a separate lifecycle because it has a 'struct device'
embedded. Thus, having a release callback for it is correct.
Allocating the vm_dev struct with devres totally breaks this protection,
though. Instead of waiting for the vm_dev release callback, the memory
is freed when the platform_device is removed. Resulting in a
use-after-free when finally the callback is to be called.
To easily see the problem, compile the kernel with
CONFIG_DEBUG_KOBJECT_RELEASE and unbind with sysfs.
The fix is easy, don't use devres in this case.
Found during my research about object lifetime problems. |
In the Linux kernel, the following vulnerability has been resolved:
gpu: host1x: Fix memory leak of device names
The device names allocated by dev_set_name() need be freed
before module unloading, but they can not be freed because
the kobject's refcount which was set in device_initialize()
has not be decreased to 0.
As comment of device_add() says, if it fails, use only
put_device() drop the refcount, then the name will be
freed in kobejct_cleanup().
device_del() and put_device() can be replaced with
device_unregister(), so call it to unregister the added
successfully devices, and just call put_device() to the
not added device.
Add a release() function to device to avoid null release()
function WARNING in device_release(), it's empty, because
the context devices are freed together in
host1x_memory_context_list_free(). |
In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: fix time stamp counter initialization
If the gs_usb device driver is unloaded (or unbound) before the
interface is shut down, the USB stack first calls the struct
usb_driver::disconnect and then the struct net_device_ops::ndo_stop
callback.
In gs_usb_disconnect() all pending bulk URBs are killed, i.e. no more
RX'ed CAN frames are send from the USB device to the host. Later in
gs_can_close() a reset control message is send to each CAN channel to
remove the controller from the CAN bus. In this race window the USB
device can still receive CAN frames from the bus and internally queue
them to be send to the host.
At least in the current version of the candlelight firmware, the queue
of received CAN frames is not emptied during the reset command. After
loading (or binding) the gs_usb driver, new URBs are submitted during
the struct net_device_ops::ndo_open callback and the candlelight
firmware starts sending its already queued CAN frames to the host.
However, this scenario was not considered when implementing the
hardware timestamp function. The cycle counter/time counter
infrastructure is set up (gs_usb_timestamp_init()) after the USBs are
submitted, resulting in a NULL pointer dereference if
timecounter_cyc2time() (via the call chain:
gs_usb_receive_bulk_callback() -> gs_usb_set_timestamp() ->
gs_usb_skb_set_timestamp()) is called too early.
Move the gs_usb_timestamp_init() function before the URBs are
submitted to fix this problem.
For a comprehensive solution, we need to consider gs_usb devices with
more than 1 channel. The cycle counter/time counter infrastructure is
setup per channel, but the RX URBs are per device. Once gs_can_open()
of _a_ channel has been called, and URBs have been submitted, the
gs_usb_receive_bulk_callback() can be called for _all_ available
channels, even for channels that are not running, yet. As cycle
counter/time counter has not set up, this will again lead to a NULL
pointer dereference.
Convert the cycle counter/time counter from a "per channel" to a "per
device" functionality. Also set it up, before submitting any URBs to
the device.
Further in gs_usb_receive_bulk_callback(), don't process any URBs for
not started CAN channels, only resubmit the URB. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Fix a memory leak
Add a forgotten kfree(). |
In the Linux kernel, the following vulnerability has been resolved:
qed: allow sleep in qed_mcp_trace_dump()
By default, qed_mcp_cmd_and_union() delays 10us at a time in a loop
that can run 500K times, so calls to qed_mcp_nvm_rd_cmd()
may block the current thread for over 5s.
We observed thread scheduling delays over 700ms in production,
with stacktraces pointing to this code as the culprit.
qed_mcp_trace_dump() is called from ethtool, so sleeping is permitted.
It already can sleep in qed_mcp_halt(), which calls qed_mcp_cmd().
Add a "can sleep" parameter to qed_find_nvram_image() and
qed_nvram_read() so they can sleep during qed_mcp_trace_dump().
qed_mcp_trace_get_meta_info() and qed_mcp_trace_read_meta(),
called only by qed_mcp_trace_dump(), allow these functions to sleep.
I can't tell if the other caller (qed_grc_dump_mcp_hw_dump()) can sleep,
so keep b_can_sleep set to false when it calls these functions.
An example stacktrace from a custom warning we added to the kernel
showing a thread that has not scheduled despite long needing resched:
[ 2745.362925,17] ------------[ cut here ]------------
[ 2745.362941,17] WARNING: CPU: 23 PID: 5640 at arch/x86/kernel/irq.c:233 do_IRQ+0x15e/0x1a0()
[ 2745.362946,17] Thread not rescheduled for 744 ms after irq 99
[ 2745.362956,17] Modules linked in: ...
[ 2745.363339,17] CPU: 23 PID: 5640 Comm: lldpd Tainted: P O 4.4.182+ #202104120910+6d1da174272d.61x
[ 2745.363343,17] Hardware name: FOXCONN MercuryB/Quicksilver Controller, BIOS H11P1N09 07/08/2020
[ 2745.363346,17] 0000000000000000 ffff885ec07c3ed8 ffffffff8131eb2f ffff885ec07c3f20
[ 2745.363358,17] ffffffff81d14f64 ffff885ec07c3f10 ffffffff81072ac2 ffff88be98ed0000
[ 2745.363369,17] 0000000000000063 0000000000000174 0000000000000074 0000000000000000
[ 2745.363379,17] Call Trace:
[ 2745.363382,17] <IRQ> [<ffffffff8131eb2f>] dump_stack+0x8e/0xcf
[ 2745.363393,17] [<ffffffff81072ac2>] warn_slowpath_common+0x82/0xc0
[ 2745.363398,17] [<ffffffff81072b4c>] warn_slowpath_fmt+0x4c/0x50
[ 2745.363404,17] [<ffffffff810d5a8e>] ? rcu_irq_exit+0xae/0xc0
[ 2745.363408,17] [<ffffffff817c99fe>] do_IRQ+0x15e/0x1a0
[ 2745.363413,17] [<ffffffff817c7ac9>] common_interrupt+0x89/0x89
[ 2745.363416,17] <EOI> [<ffffffff8132aa74>] ? delay_tsc+0x24/0x50
[ 2745.363425,17] [<ffffffff8132aa04>] __udelay+0x34/0x40
[ 2745.363457,17] [<ffffffffa04d45ff>] qed_mcp_cmd_and_union+0x36f/0x7d0 [qed]
[ 2745.363473,17] [<ffffffffa04d5ced>] qed_mcp_nvm_rd_cmd+0x4d/0x90 [qed]
[ 2745.363490,17] [<ffffffffa04e1dc7>] qed_mcp_trace_dump+0x4a7/0x630 [qed]
[ 2745.363504,17] [<ffffffffa04e2556>] ? qed_fw_asserts_dump+0x1d6/0x1f0 [qed]
[ 2745.363520,17] [<ffffffffa04e4ea7>] qed_dbg_mcp_trace_get_dump_buf_size+0x37/0x80 [qed]
[ 2745.363536,17] [<ffffffffa04ea881>] qed_dbg_feature_size+0x61/0xa0 [qed]
[ 2745.363551,17] [<ffffffffa04eb427>] qed_dbg_all_data_size+0x247/0x260 [qed]
[ 2745.363560,17] [<ffffffffa0482c10>] qede_get_regs_len+0x30/0x40 [qede]
[ 2745.363566,17] [<ffffffff816c9783>] ethtool_get_drvinfo+0xe3/0x190
[ 2745.363570,17] [<ffffffff816cc152>] dev_ethtool+0x1362/0x2140
[ 2745.363575,17] [<ffffffff8109bcc6>] ? finish_task_switch+0x76/0x260
[ 2745.363580,17] [<ffffffff817c2116>] ? __schedule+0x3c6/0x9d0
[ 2745.363585,17] [<ffffffff810dbd50>] ? hrtimer_start_range_ns+0x1d0/0x370
[ 2745.363589,17] [<ffffffff816c1e5b>] ? dev_get_by_name_rcu+0x6b/0x90
[ 2745.363594,17] [<ffffffff816de6a8>] dev_ioctl+0xe8/0x710
[ 2745.363599,17] [<ffffffff816a58a8>] sock_do_ioctl+0x48/0x60
[ 2745.363603,17] [<ffffffff816a5d87>] sock_ioctl+0x1c7/0x280
[ 2745.363608,17] [<ffffffff8111f393>] ? seccomp_phase1+0x83/0x220
[ 2745.363612,17] [<ffffffff811e3503>] do_vfs_ioctl+0x2b3/0x4e0
[ 2745.363616,17] [<ffffffff811e3771>] SyS_ioctl+0x41/0x70
[ 2745.363619,17] [<ffffffff817c6ffe>] entry_SYSCALL_64_fastpath+0x1e/0x79
[ 2745.363622,17] ---[ end trace f6954aa440266421 ]--- |