| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: fix refcount leak in smb2_open()
When ksmbd_vfs_getattr() fails, the reference count of ksmbd_file
must be released. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/server: call ksmbd_session_rpc_close() on error path in create_smb2_pipe()
When ksmbd_iov_pin_rsp() fails, we should call ksmbd_session_rpc_close(). |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Sanitize syscall table indexing under speculation
The syscall number is a user-controlled value used to index into the
syscall table. Use array_index_nospec() to clamp this value after the
bounds check to prevent speculative out-of-bounds access and subsequent
data leakage via cache side channels. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: fixup hang in nvmet_tcp_listen_data_ready()
When the socket is closed while in TCP_LISTEN a callback is run to
flush all outstanding packets, which in turns calls
nvmet_tcp_listen_data_ready() with the sk_callback_lock held.
So we need to check if we are in TCP_LISTEN before attempting
to get the sk_callback_lock() to avoid a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8m-blk-ctrl: fix out-of-range access of bc->domains
Fix out-of-range access of bc->domains in imx8m_blk_ctrl_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: r8152: fix resume reset deadlock
rtl8152 can trigger device reset during reset which
potentially can result in a deadlock:
**** DPM device timeout after 10 seconds; 15 seconds until panic ****
Call Trace:
<TASK>
schedule+0x483/0x1370
schedule_preempt_disabled+0x15/0x30
__mutex_lock_common+0x1fd/0x470
__rtl8152_set_mac_address+0x80/0x1f0
dev_set_mac_address+0x7f/0x150
rtl8152_post_reset+0x72/0x150
usb_reset_device+0x1d0/0x220
rtl8152_resume+0x99/0xc0
usb_resume_interface+0x3e/0xc0
usb_resume_both+0x104/0x150
usb_resume+0x22/0x110
The problem is that rtl8152 resume calls reset under
tp->control mutex while reset basically re-enters rtl8152
and attempts to acquire the same tp->control lock once
again.
Reset INACCESSIBLE device outside of tp->control mutex
scope to avoid recursive mutex_lock() deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: aloop: Fix racy access at PCM trigger
The PCM trigger callback of aloop driver tries to check the PCM state
and stop the stream of the tied substream in the corresponding cable.
Since both check and stop operations are performed outside the cable
lock, this may result in UAF when a program attempts to trigger
frequently while opening/closing the tied stream, as spotted by
fuzzers.
For addressing the UAF, this patch changes two things:
- It covers the most of code in loopback_check_format() with
cable->lock spinlock, and add the proper NULL checks. This avoids
already some racy accesses.
- In addition, now we try to check the state of the capture PCM stream
that may be stopped in this function, which was the major pain point
leading to UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: avoid pool UAF
An UAF issue was observed:
BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150
Write of size 8 at addr ffff888106715440 by task insmod/527
CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11
Tainted: [O]=OOT_MODULE
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
kasan_report+0xca/0x100
kasan_check_range+0x39/0x1c0
page_counter_uncharge+0x65/0x150
dmem_cgroup_uncharge+0x1f/0x260
Allocated by task 527:
Freed by task 0:
The buggy address belongs to the object at ffff888106715400
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 64 bytes inside of
freed 512-byte region [ffff888106715400, ffff888106715600)
The buggy address belongs to the physical page:
Memory state around the buggy address:
ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
The issue occurs because a pool can still be held by a caller after its
associated memory region is unregistered. The current implementation frees
the pool even if users still hold references to it (e.g., before uncharge
operations complete).
This patch adds a reference counter to each pool, ensuring that a pool is
only freed when its reference count drops to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF in binder_netlink_report()
Oneway transactions sent to frozen targets via binder_proc_transaction()
return a BR_TRANSACTION_PENDING_FROZEN error but they are still treated
as successful since the target is expected to thaw at some point. It is
then not safe to access 't' after BR_TRANSACTION_PENDING_FROZEN errors
as the transaction could have been consumed by the now thawed target.
This is the case for binder_netlink_report() which derreferences 't'
after a pending frozen error, as pointed out by the following KASAN
report:
==================================================================
BUG: KASAN: slab-use-after-free in binder_netlink_report.isra.0+0x694/0x6c8
Read of size 8 at addr ffff00000f98ba38 by task binder-util/522
CPU: 4 UID: 0 PID: 522 Comm: binder-util Not tainted 6.19.0-rc6-00015-gc03e9c42ae8f #1 PREEMPT
Hardware name: linux,dummy-virt (DT)
Call trace:
binder_netlink_report.isra.0+0x694/0x6c8
binder_transaction+0x66e4/0x79b8
binder_thread_write+0xab4/0x4440
binder_ioctl+0x1fd4/0x2940
[...]
Allocated by task 522:
__kmalloc_cache_noprof+0x17c/0x50c
binder_transaction+0x584/0x79b8
binder_thread_write+0xab4/0x4440
binder_ioctl+0x1fd4/0x2940
[...]
Freed by task 488:
kfree+0x1d0/0x420
binder_free_transaction+0x150/0x234
binder_thread_read+0x2d08/0x3ce4
binder_ioctl+0x488/0x2940
[...]
==================================================================
Instead, make a transaction copy so the data can be safely accessed by
binder_netlink_report() after a pending frozen error. While here, add a
comment about not using t->buffer in binder_netlink_report(). |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix ECMP sibling count mismatch when clearing RTF_ADDRCONF
syzbot reported a kernel BUG in fib6_add_rt2node() when adding an IPv6
route. [0]
Commit f72514b3c569 ("ipv6: clear RA flags when adding a static
route") introduced logic to clear RTF_ADDRCONF from existing routes
when a static route with the same nexthop is added. However, this
causes a problem when the existing route has a gateway.
When RTF_ADDRCONF is cleared from a route that has a gateway, that
route becomes eligible for ECMP, i.e. rt6_qualify_for_ecmp() returns
true. The issue is that this route was never added to the
fib6_siblings list.
This leads to a mismatch between the following counts:
- The sibling count computed by iterating fib6_next chain, which
includes the newly ECMP-eligible route
- The actual siblings in fib6_siblings list, which does not include
that route
When a subsequent ECMP route is added, fib6_add_rt2node() hits
BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings) because the
counts don't match.
Fix this by only clearing RTF_ADDRCONF when the existing route does
not have a gateway. Routes without a gateway cannot qualify for ECMP
anyway (rt6_qualify_for_ecmp() requires fib_nh_gw_family), so clearing
RTF_ADDRCONF on them is safe and matches the original intent of the
commit.
[0]:
kernel BUG at net/ipv6/ip6_fib.c:1217!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6010 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:fib6_add_rt2node+0x3433/0x3470 net/ipv6/ip6_fib.c:1217
[...]
Call Trace:
<TASK>
fib6_add+0x8da/0x18a0 net/ipv6/ip6_fib.c:1532
__ip6_ins_rt net/ipv6/route.c:1351 [inline]
ip6_route_add+0xde/0x1b0 net/ipv6/route.c:3946
ipv6_route_ioctl+0x35c/0x480 net/ipv6/route.c:4571
inet6_ioctl+0x219/0x280 net/ipv6/af_inet6.c:577
sock_do_ioctl+0xdc/0x300 net/socket.c:1245
sock_ioctl+0x576/0x790 net/socket.c:1366
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: imx: preserve error state in block data length handler
When a block read returns an invalid length, zero or >I2C_SMBUS_BLOCK_MAX,
the length handler sets the state to IMX_I2C_STATE_FAILED. However,
i2c_imx_master_isr() unconditionally overwrites this with
IMX_I2C_STATE_READ_CONTINUE, causing an endless read loop that overruns
buffers and crashes the system.
Guard the state transition to preserve error states set by the length
handler. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/client: fix memory leak in smb2_open_file()
Reproducer:
1. server: directories are exported read-only
2. client: mount -t cifs //${server_ip}/export /mnt
3. client: dd if=/dev/zero of=/mnt/file bs=512 count=1000 oflag=direct
4. client: umount /mnt
5. client: sleep 1
6. client: modprobe -r cifs
The error message is as follows:
=============================================================================
BUG cifs_small_rq (Not tainted): Objects remaining on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Object 0x00000000d47521be @offset=14336
...
WARNING: mm/slub.c:1251 at __kmem_cache_shutdown+0x34e/0x440, CPU#0: modprobe/1577
...
Call Trace:
<TASK>
kmem_cache_destroy+0x94/0x190
cifs_destroy_request_bufs+0x3e/0x50 [cifs]
cleanup_module+0x4e/0x540 [cifs]
__se_sys_delete_module+0x278/0x400
__x64_sys_delete_module+0x5f/0x70
x64_sys_call+0x2299/0x2ff0
do_syscall_64+0x89/0x350
entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
kmem_cache_destroy cifs_small_rq: Slab cache still has objects when called from cifs_destroy_request_bufs+0x3e/0x50 [cifs]
WARNING: mm/slab_common.c:532 at kmem_cache_destroy+0x16b/0x190, CPU#0: modprobe/1577 |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix oops due to invalid pointer for kfree() in parse_longname()
This fixes a kernel oops when reading ceph snapshot directories (.snap),
for example by simply running `ls /mnt/my_ceph/.snap`.
The variable str is guarded by __free(kfree), but advanced by one for
skipping the initial '_' in snapshot names. Thus, kfree() is called
with an invalid pointer. This patch removes the need for advancing the
pointer so kfree() is called with correct memory pointer.
Steps to reproduce:
1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase)
2. Add cephfs mount to fstab
$ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab
3. Reboot the system
$ systemctl reboot
4. Check if it's really mounted
$ mount | grep stuff
5. List snapshots (expected 63 snapshots on my system)
$ ls /mnt/test/stuff/.snap
Now ls hangs forever and the kernel log shows the oops. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mld: cancel mlo_scan_start_wk
mlo_scan_start_wk is not canceled on disconnection. In fact, it is not
canceled anywhere except in the restart cleanup, where we don't really
have to.
This can cause an init-after-queue issue: if, for example, the work was
queued and then drv_change_interface got executed.
This can also cause use-after-free: if the work is executed after the
vif is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
linkwatch: use __dev_put() in callers to prevent UAF
After linkwatch_do_dev() calls __dev_put() to release the linkwatch
reference, the device refcount may drop to 1. At this point,
netdev_run_todo() can proceed (since linkwatch_sync_dev() sees an
empty list and returns without blocking), wait for the refcount to
become 1 via netdev_wait_allrefs_any(), and then free the device
via kobject_put().
This creates a use-after-free when __linkwatch_run_queue() tries to
call netdev_unlock_ops() on the already-freed device.
Note that adding netdev_lock_ops()/netdev_unlock_ops() pair in
netdev_run_todo() before kobject_put() would not work, because
netdev_lock_ops() is conditional - it only locks when
netdev_need_ops_lock() returns true. If the device doesn't require
ops_lock, linkwatch won't hold any lock, and netdev_run_todo()
acquiring the lock won't provide synchronization.
Fix this by moving __dev_put() from linkwatch_do_dev() to its
callers. The device reference logically pairs with de-listing the
device, so it's reasonable for the caller that did the de-listing
to release it. This allows placing __dev_put() after all device
accesses are complete, preventing UAF.
The bug can be reproduced by adding mdelay(2000) after
linkwatch_do_dev() in __linkwatch_run_queue(), then running:
ip tuntap add mode tun name tun_test
ip link set tun_test up
ip link set tun_test carrier off
ip link set tun_test carrier on
sleep 0.5
ip tuntap del mode tun name tun_test
KASAN report:
==================================================================
BUG: KASAN: use-after-free in netdev_need_ops_lock include/net/netdev_lock.h:33 [inline]
BUG: KASAN: use-after-free in netdev_unlock_ops include/net/netdev_lock.h:47 [inline]
BUG: KASAN: use-after-free in __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245
Read of size 8 at addr ffff88804de5c008 by task kworker/u32:10/8123
CPU: 0 UID: 0 PID: 8123 Comm: kworker/u32:10 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Workqueue: events_unbound linkwatch_event
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x100/0x190 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x156/0x4c9 mm/kasan/report.c:482
kasan_report+0xdf/0x1a0 mm/kasan/report.c:595
netdev_need_ops_lock include/net/netdev_lock.h:33 [inline]
netdev_unlock_ops include/net/netdev_lock.h:47 [inline]
__linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245
linkwatch_event+0x8f/0xc0 net/core/link_watch.c:304
process_one_work+0x9c2/0x1840 kernel/workqueue.c:3257
process_scheduled_works kernel/workqueue.c:3340 [inline]
worker_thread+0x5da/0xe40 kernel/workqueue.c:3421
kthread+0x3b3/0x730 kernel/kthread.c:463
ret_from_fork+0x754/0xaf0 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
</TASK>
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: correctly handle FDA objects of length zero
Fix a bug where an empty FDA (fd array) object with 0 fds would cause an
out-of-bounds error. The previous implementation used `skip == 0` to
mean "this is a pointer fixup", but 0 is also the correct skip length
for an empty FDA. If the FDA is at the end of the buffer, then this
results in an attempt to write 8-bytes out of bounds. This is caught and
results in an EINVAL error being returned to userspace.
The pattern of using `skip == 0` as a special value originates from the
C-implementation of Binder. As part of fixing this bug, this pattern is
replaced with a Rust enum.
I considered the alternate option of not pushing a fixup when the length
is zero, but I think it's cleaner to just get rid of the zero-is-special
stuff.
The root cause of this bug was diagnosed by Gemini CLI on first try. I
used the following prompt:
> There appears to be a bug in @drivers/android/binder/thread.rs where
> the Fixups oob bug is triggered with 316 304 316 324. This implies
> that we somehow ended up with a fixup where buffer A has a pointer to
> buffer B, but the pointer is located at an index in buffer A that is
> out of bounds. Please investigate the code to find the bug. You may
> compare with @drivers/android/binder.c that implements this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra: Fix a memory leak in tegra_slink_probe()
In tegra_slink_probe(), when platform_get_irq() fails, it directly
returns from the function with an error code, which causes a memory leak.
Replace it with a goto label to ensure proper cleanup. |