| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-tpg: prevent the risk of a division by zero
As reported by Coverity, the logic at tpg_precalculate_line()
blindly rescales the buffer even when scaled_witdh is equal to
zero. If this ever happens, this will cause a division by zero.
Instead, add a WARN_ON_ONCE() to trigger such cases and return
without doing any precalculation. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-use-after-free in ksmbd_smb2_session_create
There is a race condition between ksmbd_smb2_session_create and
ksmbd_expire_session. This patch add missing sessions_table_lock
while adding/deleting session from global session table. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: Fix the missing xa_store error check
xa_store() can fail, it return xa_err(-EINVAL) if the entry cannot
be stored in an XArray, or xa_err(-ENOMEM) if memory allocation failed,
so check error for xa_store() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-use-after-free in smb3_preauth_hash_rsp
ksmbd_user_session_put should be called under smb3_preauth_hash_rsp().
It will avoid freeing session before calling smb3_preauth_hash_rsp(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read()
Avoid a possible buffer overflow if size is larger than 4K.
(cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434) |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix flushing uninitialized delayed_work on cache_ctr error
An unexpected WARN_ON from flush_work() may occur when cache creation
fails, caused by destroying the uninitialized delayed_work waker in the
error path of cache_create(). For example, the warning appears on the
superblock checksum error.
Reproduce steps:
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/urandom of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
Kernel logs:
(snip)
WARNING: CPU: 0 PID: 84 at kernel/workqueue.c:4178 __flush_work+0x5d4/0x890
Fix by pulling out the cancel_delayed_work_sync() from the constructor's
error path. This patch doesn't affect the use-after-free fix for
concurrent dm_resume and dm_destroy (commit 6a459d8edbdb ("dm cache: Fix
UAF in destroy()")) as cache_dtr is not changed. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix out-of-bounds access to the dirty bitset when resizing
dm-cache checks the dirty bits of the cache blocks to be dropped when
shrinking the fast device, but an index bug in bitset iteration causes
out-of-bounds access.
Reproduce steps:
1. create a cache device of 1024 cache blocks (128 bytes dirty bitset)
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
2. shrink the fast device to 512 cache blocks, triggering out-of-bounds
access to the dirty bitset (offset 0x80)
dmsetup suspend cache
dmsetup reload cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in cache_preresume+0x269/0x7b0
Read of size 8 at addr ffffc900000f3080 by task dmsetup/131
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc900000f3000, ffffc900000f5000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc900000f2f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffc900000f3080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc900000f3100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3180: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by making the index post-incremented. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix potential out-of-bounds access on the first resume
Out-of-bounds access occurs if the fast device is expanded unexpectedly
before the first-time resume of the cache table. This happens because
expanding the fast device requires reloading the cache table for
cache_create to allocate new in-core data structures that fit the new
size, and the check in cache_preresume is not performed during the
first resume, leading to the issue.
Reproduce steps:
1. prepare component devices:
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
2. load a cache table of 512 cache blocks, and deliberately expand the
fast device before resuming the cache, making the in-core data
structures inadequate.
dmsetup create cache --notable
dmsetup reload cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
dmsetup reload cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
3. suspend the cache to write out the in-core dirty bitset and hint
array, leading to out-of-bounds access to the dirty bitset at offset
0x40:
dmsetup suspend cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in is_dirty_callback+0x2b/0x80
Read of size 8 at addr ffffc90000085040 by task dmsetup/90
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc90000085000, ffffc90000087000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc90000084f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90000084f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90000085000: 00 00 00 00 00 00 00 00 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90000085080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90000085100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by checking the size change on the first resume. |
| In the Linux kernel, the following vulnerability has been resolved:
net: vertexcom: mse102x: Fix possible double free of TX skb
The scope of the TX skb is wider than just mse102x_tx_frame_spi(),
so in case the TX skb room needs to be expanded, we should free the
the temporary skb instead of the original skb. Otherwise the original
TX skb pointer would be freed again in mse102x_tx_work(), which leads
to crashes:
Internal error: Oops: 0000000096000004 [#2] PREEMPT SMP
CPU: 0 PID: 712 Comm: kworker/0:1 Tainted: G D 6.6.23
Hardware name: chargebyte Charge SOM DC-ONE (DT)
Workqueue: events mse102x_tx_work [mse102x]
pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : skb_release_data+0xb8/0x1d8
lr : skb_release_data+0x1ac/0x1d8
sp : ffff8000819a3cc0
x29: ffff8000819a3cc0 x28: ffff0000046daa60 x27: ffff0000057f2dc0
x26: ffff000005386c00 x25: 0000000000000002 x24: 00000000ffffffff
x23: 0000000000000000 x22: 0000000000000001 x21: ffff0000057f2e50
x20: 0000000000000006 x19: 0000000000000000 x18: ffff00003fdacfcc
x17: e69ad452d0c49def x16: 84a005feff870102 x15: 0000000000000000
x14: 000000000000024a x13: 0000000000000002 x12: 0000000000000000
x11: 0000000000000400 x10: 0000000000000930 x9 : ffff00003fd913e8
x8 : fffffc00001bc008
x7 : 0000000000000000 x6 : 0000000000000008
x5 : ffff00003fd91340 x4 : 0000000000000000 x3 : 0000000000000009
x2 : 00000000fffffffe x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
skb_release_data+0xb8/0x1d8
kfree_skb_reason+0x48/0xb0
mse102x_tx_work+0x164/0x35c [mse102x]
process_one_work+0x138/0x260
worker_thread+0x32c/0x438
kthread+0x118/0x11c
ret_from_fork+0x10/0x20
Code: aa1303e0 97fffab6 72001c1f 54000141 (f9400660) |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: reinitialize delayed ref list after deleting it from the list
At insert_delayed_ref() if we need to update the action of an existing
ref to BTRFS_DROP_DELAYED_REF, we delete the ref from its ref head's
ref_add_list using list_del(), which leaves the ref's add_list member
not reinitialized, as list_del() sets the next and prev members of the
list to LIST_POISON1 and LIST_POISON2, respectively.
If later we end up calling drop_delayed_ref() against the ref, which can
happen during merging or when destroying delayed refs due to a transaction
abort, we can trigger a crash since at drop_delayed_ref() we call
list_empty() against the ref's add_list, which returns false since
the list was not reinitialized after the list_del() and as a consequence
we call list_del() again at drop_delayed_ref(). This results in an
invalid list access since the next and prev members are set to poison
pointers, resulting in a splat if CONFIG_LIST_HARDENED and
CONFIG_DEBUG_LIST are set or invalid poison pointer dereferences
otherwise.
So fix this by deleting from the list with list_del_init() instead. |
| In the Linux kernel, the following vulnerability has been resolved:
filemap: Fix bounds checking in filemap_read()
If the caller supplies an iocb->ki_pos value that is close to the
filesystem upper limit, and an iterator with a count that causes us to
overflow that limit, then filemap_read() enters an infinite loop.
This behaviour was discovered when testing xfstests generic/525 with the
"localio" optimisation for loopback NFS mounts. |
| In the Linux kernel, the following vulnerability has been resolved:
signal: restore the override_rlimit logic
Prior to commit d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of
ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of
signals. However now it's enforced unconditionally, even if
override_rlimit is set. This behavior change caused production issues.
For example, if the limit is reached and a process receives a SIGSEGV
signal, sigqueue_alloc fails to allocate the necessary resources for the
signal delivery, preventing the signal from being delivered with siginfo.
This prevents the process from correctly identifying the fault address and
handling the error. From the user-space perspective, applications are
unaware that the limit has been reached and that the siginfo is
effectively 'corrupted'. This can lead to unpredictable behavior and
crashes, as we observed with java applications.
Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip
the comparison to max there if override_rlimit is set. This effectively
restores the old behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: musb: sunxi: Fix accessing an released usb phy
Commit 6ed05c68cbca ("usb: musb: sunxi: Explicitly release USB PHY on
exit") will cause that usb phy @glue->xceiv is accessed after released.
1) register platform driver @sunxi_musb_driver
// get the usb phy @glue->xceiv
sunxi_musb_probe() -> devm_usb_get_phy().
2) register and unregister platform driver @musb_driver
musb_probe() -> sunxi_musb_init()
use the phy here
//the phy is released here
musb_remove() -> sunxi_musb_exit() -> devm_usb_put_phy()
3) register @musb_driver again
musb_probe() -> sunxi_musb_init()
use the phy here but the phy has been released at 2).
...
Fixed by reverting the commit, namely, removing devm_usb_put_phy()
from sunxi_musb_exit(). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: fix potential out of bounds in ucsi_ccg_update_set_new_cam_cmd()
The "*cmd" variable can be controlled by the user via debugfs. That means
"new_cam" can be as high as 255 while the size of the uc->updated[] array
is UCSI_MAX_ALTMODES (30).
The call tree is:
ucsi_cmd() // val comes from simple_attr_write_xsigned()
-> ucsi_send_command()
-> ucsi_send_command_common()
-> ucsi_run_command() // calls ucsi->ops->sync_control()
-> ucsi_ccg_sync_control() |
| In the Linux kernel, the following vulnerability has been resolved:
USB: serial: io_edgeport: fix use after free in debug printk
The "dev_dbg(&urb->dev->dev, ..." which happens after usb_free_urb(urb)
is a use after free of the "urb" pointer. Store the "dev" pointer at the
start of the function to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: remove entry once instead of null-ptr-dereference in ocfs2_xa_remove()
Syzkaller is able to provoke null-ptr-dereference in ocfs2_xa_remove():
[ 57.319872] (a.out,1161,7):ocfs2_xa_remove:2028 ERROR: status = -12
[ 57.320420] (a.out,1161,7):ocfs2_xa_cleanup_value_truncate:1999 ERROR: Partial truncate while removing xattr overlay.upper. Leaking 1 clusters and removing the entry
[ 57.321727] BUG: kernel NULL pointer dereference, address: 0000000000000004
[...]
[ 57.325727] RIP: 0010:ocfs2_xa_block_wipe_namevalue+0x2a/0xc0
[...]
[ 57.331328] Call Trace:
[ 57.331477] <TASK>
[...]
[ 57.333511] ? do_user_addr_fault+0x3e5/0x740
[ 57.333778] ? exc_page_fault+0x70/0x170
[ 57.334016] ? asm_exc_page_fault+0x2b/0x30
[ 57.334263] ? __pfx_ocfs2_xa_block_wipe_namevalue+0x10/0x10
[ 57.334596] ? ocfs2_xa_block_wipe_namevalue+0x2a/0xc0
[ 57.334913] ocfs2_xa_remove_entry+0x23/0xc0
[ 57.335164] ocfs2_xa_set+0x704/0xcf0
[ 57.335381] ? _raw_spin_unlock+0x1a/0x40
[ 57.335620] ? ocfs2_inode_cache_unlock+0x16/0x20
[ 57.335915] ? trace_preempt_on+0x1e/0x70
[ 57.336153] ? start_this_handle+0x16c/0x500
[ 57.336410] ? preempt_count_sub+0x50/0x80
[ 57.336656] ? _raw_read_unlock+0x20/0x40
[ 57.336906] ? start_this_handle+0x16c/0x500
[ 57.337162] ocfs2_xattr_block_set+0xa6/0x1e0
[ 57.337424] __ocfs2_xattr_set_handle+0x1fd/0x5d0
[ 57.337706] ? ocfs2_start_trans+0x13d/0x290
[ 57.337971] ocfs2_xattr_set+0xb13/0xfb0
[ 57.338207] ? dput+0x46/0x1c0
[ 57.338393] ocfs2_xattr_trusted_set+0x28/0x30
[ 57.338665] ? ocfs2_xattr_trusted_set+0x28/0x30
[ 57.338948] __vfs_removexattr+0x92/0xc0
[ 57.339182] __vfs_removexattr_locked+0xd5/0x190
[ 57.339456] ? preempt_count_sub+0x50/0x80
[ 57.339705] vfs_removexattr+0x5f/0x100
[...]
Reproducer uses faultinject facility to fail ocfs2_xa_remove() ->
ocfs2_xa_value_truncate() with -ENOMEM.
In this case the comment mentions that we can return 0 if
ocfs2_xa_cleanup_value_truncate() is going to wipe the entry
anyway. But the following 'rc' check is wrong and execution flow do
'ocfs2_xa_remove_entry(loc);' twice:
* 1st: in ocfs2_xa_cleanup_value_truncate();
* 2nd: returning back to ocfs2_xa_remove() instead of going to 'out'.
Fix this by skipping the 2nd removal of the same entry and making
syzkaller repro happy. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: Initialization of the dangling pointer occurring in vsk->trans
During loopback communication, a dangling pointer can be created in
vsk->trans, potentially leading to a Use-After-Free condition. This
issue is resolved by initializing vsk->trans to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds write in trie_get_next_key()
trie_get_next_key() allocates a node stack with size trie->max_prefixlen,
while it writes (trie->max_prefixlen + 1) nodes to the stack when it has
full paths from the root to leaves. For example, consider a trie with
max_prefixlen is 8, and the nodes with key 0x00/0, 0x00/1, 0x00/2, ...
0x00/8 inserted. Subsequent calls to trie_get_next_key with _key with
.prefixlen = 8 make 9 nodes be written on the node stack with size 8. |
| In the Linux kernel, the following vulnerability has been resolved:
macsec: Fix use-after-free while sending the offloading packet
KASAN reports the following UAF. The metadata_dst, which is used to
store the SCI value for macsec offload, is already freed by
metadata_dst_free() in macsec_free_netdev(), while driver still use it
for sending the packet.
To fix this issue, dst_release() is used instead to release
metadata_dst. So it is not freed instantly in macsec_free_netdev() if
still referenced by skb.
BUG: KASAN: slab-use-after-free in mlx5e_xmit+0x1e8f/0x4190 [mlx5_core]
Read of size 2 at addr ffff88813e42e038 by task kworker/7:2/714
[...]
Workqueue: mld mld_ifc_work
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xc1/0x600
kasan_report+0xab/0xe0
mlx5e_xmit+0x1e8f/0x4190 [mlx5_core]
dev_hard_start_xmit+0x120/0x530
sch_direct_xmit+0x149/0x11e0
__qdisc_run+0x3ad/0x1730
__dev_queue_xmit+0x1196/0x2ed0
vlan_dev_hard_start_xmit+0x32e/0x510 [8021q]
dev_hard_start_xmit+0x120/0x530
__dev_queue_xmit+0x14a7/0x2ed0
macsec_start_xmit+0x13e9/0x2340
dev_hard_start_xmit+0x120/0x530
__dev_queue_xmit+0x14a7/0x2ed0
ip6_finish_output2+0x923/0x1a70
ip6_finish_output+0x2d7/0x970
ip6_output+0x1ce/0x3a0
NF_HOOK.constprop.0+0x15f/0x190
mld_sendpack+0x59a/0xbd0
mld_ifc_work+0x48a/0xa80
process_one_work+0x5aa/0xe50
worker_thread+0x79c/0x1290
kthread+0x28f/0x350
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x11/0x20
</TASK>
Allocated by task 3922:
kasan_save_stack+0x20/0x40
kasan_save_track+0x10/0x30
__kasan_kmalloc+0x77/0x90
__kmalloc_noprof+0x188/0x400
metadata_dst_alloc+0x1f/0x4e0
macsec_newlink+0x914/0x1410
__rtnl_newlink+0xe08/0x15b0
rtnl_newlink+0x5f/0x90
rtnetlink_rcv_msg+0x667/0xa80
netlink_rcv_skb+0x12c/0x360
netlink_unicast+0x551/0x770
netlink_sendmsg+0x72d/0xbd0
__sock_sendmsg+0xc5/0x190
____sys_sendmsg+0x52e/0x6a0
___sys_sendmsg+0xeb/0x170
__sys_sendmsg+0xb5/0x140
do_syscall_64+0x4c/0x100
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 4011:
kasan_save_stack+0x20/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x50
poison_slab_object+0x10c/0x190
__kasan_slab_free+0x11/0x30
kfree+0xe0/0x290
macsec_free_netdev+0x3f/0x140
netdev_run_todo+0x450/0xc70
rtnetlink_rcv_msg+0x66f/0xa80
netlink_rcv_skb+0x12c/0x360
netlink_unicast+0x551/0x770
netlink_sendmsg+0x72d/0xbd0
__sock_sendmsg+0xc5/0x190
____sys_sendmsg+0x52e/0x6a0
___sys_sendmsg+0xeb/0x170
__sys_sendmsg+0xb5/0x140
do_syscall_64+0x4c/0x100
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: Add trailing zero to terminate the string in nsim_nexthop_bucket_activity_write()
This was found by a static analyzer.
We should not forget the trailing zero after copy_from_user()
if we will further do some string operations, sscanf() in this
case. Adding a trailing zero will ensure that the function
performs properly. |