| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix one more kernel-infoleak in algo dumping
During fuzz testing, the following issue was discovered:
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x598/0x2a30
_copy_to_iter+0x598/0x2a30
__skb_datagram_iter+0x168/0x1060
skb_copy_datagram_iter+0x5b/0x220
netlink_recvmsg+0x362/0x1700
sock_recvmsg+0x2dc/0x390
__sys_recvfrom+0x381/0x6d0
__x64_sys_recvfrom+0x130/0x200
x64_sys_call+0x32c8/0x3cc0
do_syscall_64+0xd8/0x1c0
entry_SYSCALL_64_after_hwframe+0x79/0x81
Uninit was stored to memory at:
copy_to_user_state_extra+0xcc1/0x1e00
dump_one_state+0x28c/0x5f0
xfrm_state_walk+0x548/0x11e0
xfrm_dump_sa+0x1e0/0x840
netlink_dump+0x943/0x1c40
__netlink_dump_start+0x746/0xdb0
xfrm_user_rcv_msg+0x429/0xc00
netlink_rcv_skb+0x613/0x780
xfrm_netlink_rcv+0x77/0xc0
netlink_unicast+0xe90/0x1280
netlink_sendmsg+0x126d/0x1490
__sock_sendmsg+0x332/0x3d0
____sys_sendmsg+0x863/0xc30
___sys_sendmsg+0x285/0x3e0
__x64_sys_sendmsg+0x2d6/0x560
x64_sys_call+0x1316/0x3cc0
do_syscall_64+0xd8/0x1c0
entry_SYSCALL_64_after_hwframe+0x79/0x81
Uninit was created at:
__kmalloc+0x571/0xd30
attach_auth+0x106/0x3e0
xfrm_add_sa+0x2aa0/0x4230
xfrm_user_rcv_msg+0x832/0xc00
netlink_rcv_skb+0x613/0x780
xfrm_netlink_rcv+0x77/0xc0
netlink_unicast+0xe90/0x1280
netlink_sendmsg+0x126d/0x1490
__sock_sendmsg+0x332/0x3d0
____sys_sendmsg+0x863/0xc30
___sys_sendmsg+0x285/0x3e0
__x64_sys_sendmsg+0x2d6/0x560
x64_sys_call+0x1316/0x3cc0
do_syscall_64+0xd8/0x1c0
entry_SYSCALL_64_after_hwframe+0x79/0x81
Bytes 328-379 of 732 are uninitialized
Memory access of size 732 starts at ffff88800e18e000
Data copied to user address 00007ff30f48aff0
CPU: 2 PID: 18167 Comm: syz-executor.0 Not tainted 6.8.11 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Fixes copying of xfrm algorithms where some random
data of the structure fields can end up in userspace.
Padding in structures may be filled with random (possibly sensitve)
data and should never be given directly to user-space.
A similar issue was resolved in the commit
8222d5910dae ("xfrm: Zero padding when dumping algos and encap")
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Disable PSR-SU on Parade 08-01 TCON too
Stuart Hayhurst has found that both at bootup and fullscreen VA-API video
is leading to black screens for around 1 second and kernel WARNING [1] traces
when calling dmub_psr_enable() with Parade 08-01 TCON.
These symptoms all go away with PSR-SU disabled for this TCON, so disable
it for now while DMUB traces [2] from the failure can be analyzed and the failure
state properly root caused.
(cherry picked from commit afb634a6823d8d9db23c5fb04f79c5549349628b) |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix NULL Dereference in asoc_qcom_lpass_cpu_platform_probe()
A devm_kzalloc() in asoc_qcom_lpass_cpu_platform_probe() could
possibly return NULL pointer. NULL Pointer Dereference may be
triggerred without addtional check.
Add a NULL check for the returned pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix incorrect pci_for_each_dma_alias() for non-PCI devices
Previously, the domain_context_clear() function incorrectly called
pci_for_each_dma_alias() to set up context entries for non-PCI devices.
This could lead to kernel hangs or other unexpected behavior.
Add a check to only call pci_for_each_dma_alias() for PCI devices. For
non-PCI devices, domain_context_clear_one() is called directly. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: probes: Remove broken LDR (literal) uprobe support
The simulate_ldr_literal() and simulate_ldrsw_literal() functions are
unsafe to use for uprobes. Both functions were originally written for
use with kprobes, and access memory with plain C accesses. When uprobes
was added, these were reused unmodified even though they cannot safely
access user memory.
There are three key problems:
1) The plain C accesses do not have corresponding extable entries, and
thus if they encounter a fault the kernel will treat these as
unintentional accesses to user memory, resulting in a BUG() which
will kill the kernel thread, and likely lead to further issues (e.g.
lockup or panic()).
2) The plain C accesses are subject to HW PAN and SW PAN, and so when
either is in use, any attempt to simulate an access to user memory
will fault. Thus neither simulate_ldr_literal() nor
simulate_ldrsw_literal() can do anything useful when simulating a
user instruction on any system with HW PAN or SW PAN.
3) The plain C accesses are privileged, as they run in kernel context,
and in practice can access a small range of kernel virtual addresses.
The instructions they simulate have a range of +/-1MiB, and since the
simulated instructions must itself be a user instructions in the
TTBR0 address range, these can address the final 1MiB of the TTBR1
acddress range by wrapping downwards from an address in the first
1MiB of the TTBR0 address range.
In contemporary kernels the last 8MiB of TTBR1 address range is
reserved, and accesses to this will always fault, meaning this is no
worse than (1).
Historically, it was theoretically possible for the linear map or
vmemmap to spill into the final 8MiB of the TTBR1 address range, but
in practice this is extremely unlikely to occur as this would
require either:
* Having enough physical memory to fill the entire linear map all the
way to the final 1MiB of the TTBR1 address range.
* Getting unlucky with KASLR randomization of the linear map such
that the populated region happens to overlap with the last 1MiB of
the TTBR address range.
... and in either case if we were to spill into the final page there
would be larger problems as the final page would alias with error
pointers.
Practically speaking, (1) and (2) are the big issues. Given there have
been no reports of problems since the broken code was introduced, it
appears that no-one is relying on probing these instructions with
uprobes.
Avoid these issues by not allowing uprobes on LDR (literal) and LDRSW
(literal), limiting the use of simulate_ldr_literal() and
simulate_ldrsw_literal() to kprobes. Attempts to place uprobes on LDR
(literal) and LDRSW (literal) will be rejected as
arm_probe_decode_insn() will return INSN_REJECTED. In future we can
consider introducing working uprobes support for these instructions, but
this will require more significant work. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Set SDEV_OFFLINE when UFS is shut down
There is a history of deadlock if reboot is performed at the beginning
of booting. SDEV_QUIESCE was set for all LU's scsi_devices by UFS
shutdown, and at that time the audio driver was waiting on
blk_mq_submit_bio() holding a mutex_lock while reading the fw binary.
After that, a deadlock issue occurred while audio driver shutdown was
waiting for mutex_unlock of blk_mq_submit_bio(). To solve this, set
SDEV_OFFLINE for all LUs except WLUN, so that any I/O that comes down
after a UFS shutdown will return an error.
[ 31.907781]I[0: swapper/0: 0] 1 130705007 1651079834 11289729804 0 D( 2) 3 ffffff882e208000 * init [device_shutdown]
[ 31.907793]I[0: swapper/0: 0] Mutex: 0xffffff8849a2b8b0: owner[0xffffff882e28cb00 kworker/6:0 :49]
[ 31.907806]I[0: swapper/0: 0] Call trace:
[ 31.907810]I[0: swapper/0: 0] __switch_to+0x174/0x338
[ 31.907819]I[0: swapper/0: 0] __schedule+0x5ec/0x9cc
[ 31.907826]I[0: swapper/0: 0] schedule+0x7c/0xe8
[ 31.907834]I[0: swapper/0: 0] schedule_preempt_disabled+0x24/0x40
[ 31.907842]I[0: swapper/0: 0] __mutex_lock+0x408/0xdac
[ 31.907849]I[0: swapper/0: 0] __mutex_lock_slowpath+0x14/0x24
[ 31.907858]I[0: swapper/0: 0] mutex_lock+0x40/0xec
[ 31.907866]I[0: swapper/0: 0] device_shutdown+0x108/0x280
[ 31.907875]I[0: swapper/0: 0] kernel_restart+0x4c/0x11c
[ 31.907883]I[0: swapper/0: 0] __arm64_sys_reboot+0x15c/0x280
[ 31.907890]I[0: swapper/0: 0] invoke_syscall+0x70/0x158
[ 31.907899]I[0: swapper/0: 0] el0_svc_common+0xb4/0xf4
[ 31.907909]I[0: swapper/0: 0] do_el0_svc+0x2c/0xb0
[ 31.907918]I[0: swapper/0: 0] el0_svc+0x34/0xe0
[ 31.907928]I[0: swapper/0: 0] el0t_64_sync_handler+0x68/0xb4
[ 31.907937]I[0: swapper/0: 0] el0t_64_sync+0x1a0/0x1a4
[ 31.908774]I[0: swapper/0: 0] 49 0 11960702 11236868007 0 D( 2) 6 ffffff882e28cb00 * kworker/6:0 [__bio_queue_enter]
[ 31.908783]I[0: swapper/0: 0] Call trace:
[ 31.908788]I[0: swapper/0: 0] __switch_to+0x174/0x338
[ 31.908796]I[0: swapper/0: 0] __schedule+0x5ec/0x9cc
[ 31.908803]I[0: swapper/0: 0] schedule+0x7c/0xe8
[ 31.908811]I[0: swapper/0: 0] __bio_queue_enter+0xb8/0x178
[ 31.908818]I[0: swapper/0: 0] blk_mq_submit_bio+0x194/0x67c
[ 31.908827]I[0: swapper/0: 0] __submit_bio+0xb8/0x19c |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/dmem: Fix vulnerability in migrate_to_ram upon copy error
The `nouveau_dmem_copy_one` function ensures that the copy push command is
sent to the device firmware but does not track whether it was executed
successfully.
In the case of a copy error (e.g., firmware or hardware failure), the
copy push command will be sent via the firmware channel, and
`nouveau_dmem_copy_one` will likely report success, leading to the
`migrate_to_ram` function returning a dirty HIGH_USER page to the user.
This can result in a security vulnerability, as a HIGH_USER page that may
contain sensitive or corrupted data could be returned to the user.
To prevent this vulnerability, we allocate a zero page. Thus, in case of
an error, a non-dirty (zero) page will be returned to the user. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mad: Improve handling of timed out WRs of mad agent
Current timeout handler of mad agent acquires/releases mad_agent_priv
lock for every timed out WRs. This causes heavy locking contention
when higher no. of WRs are to be handled inside timeout handler.
This leads to softlockup with below trace in some use cases where
rdma-cm path is used to establish connection between peer nodes
Trace:
-----
BUG: soft lockup - CPU#4 stuck for 26s! [kworker/u128:3:19767]
CPU: 4 PID: 19767 Comm: kworker/u128:3 Kdump: loaded Tainted: G OE
------- --- 5.14.0-427.13.1.el9_4.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/01YM03, BIOS 2.4.8 11/26/2019
Workqueue: ib_mad1 timeout_sends [ib_core]
RIP: 0010:__do_softirq+0x78/0x2ac
RSP: 0018:ffffb253449e4f98 EFLAGS: 00000246
RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 000000000000001f
RDX: 000000000000001d RSI: 000000003d1879ab RDI: fff363b66fd3a86b
RBP: ffffb253604cbcd8 R08: 0000009065635f3b R09: 0000000000000000
R10: 0000000000000040 R11: ffffb253449e4ff8 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000040
FS: 0000000000000000(0000) GS:ffff8caa1fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd9ec9db900 CR3: 0000000891934006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? __irq_exit_rcu+0xa1/0xc0
? watchdog_timer_fn+0x1b2/0x210
? __pfx_watchdog_timer_fn+0x10/0x10
? __hrtimer_run_queues+0x127/0x2c0
? hrtimer_interrupt+0xfc/0x210
? __sysvec_apic_timer_interrupt+0x5c/0x110
? sysvec_apic_timer_interrupt+0x37/0x90
? asm_sysvec_apic_timer_interrupt+0x16/0x20
? __do_softirq+0x78/0x2ac
? __do_softirq+0x60/0x2ac
__irq_exit_rcu+0xa1/0xc0
sysvec_call_function_single+0x72/0x90
</IRQ>
<TASK>
asm_sysvec_call_function_single+0x16/0x20
RIP: 0010:_raw_spin_unlock_irq+0x14/0x30
RSP: 0018:ffffb253604cbd88 EFLAGS: 00000247
RAX: 000000000001960d RBX: 0000000000000002 RCX: ffff8cad2a064800
RDX: 000000008020001b RSI: 0000000000000001 RDI: ffff8cad5d39f66c
RBP: ffff8cad5d39f600 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8caa443e0c00 R11: ffffb253604cbcd8 R12: ffff8cacb8682538
R13: 0000000000000005 R14: ffffb253604cbd90 R15: ffff8cad5d39f66c
cm_process_send_error+0x122/0x1d0 [ib_cm]
timeout_sends+0x1dd/0x270 [ib_core]
process_one_work+0x1e2/0x3b0
? __pfx_worker_thread+0x10/0x10
worker_thread+0x50/0x3a0
? __pfx_worker_thread+0x10/0x10
kthread+0xdd/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x29/0x50
</TASK>
Simplified timeout handler by creating local list of timed out WRs
and invoke send handler post creating the list. The new method acquires/
releases lock once to fetch the list and hence helps to reduce locking
contetiong when processing higher no. of WRs |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: int340x: processor: Fix warning during module unload
The processor_thermal driver uses pcim_device_enable() to enable a PCI
device, which means the device will be automatically disabled on driver
detach. Thus there is no need to call pci_disable_device() again on it.
With recent PCI device resource management improvements, e.g. commit
f748a07a0b64 ("PCI: Remove legacy pcim_release()"), this problem is
exposed and triggers the warining below.
[ 224.010735] proc_thermal_pci 0000:00:04.0: disabling already-disabled device
[ 224.010747] WARNING: CPU: 8 PID: 4442 at drivers/pci/pci.c:2250 pci_disable_device+0xe5/0x100
...
[ 224.010844] Call Trace:
[ 224.010845] <TASK>
[ 224.010847] ? show_regs+0x6d/0x80
[ 224.010851] ? __warn+0x8c/0x140
[ 224.010854] ? pci_disable_device+0xe5/0x100
[ 224.010856] ? report_bug+0x1c9/0x1e0
[ 224.010859] ? handle_bug+0x46/0x80
[ 224.010862] ? exc_invalid_op+0x1d/0x80
[ 224.010863] ? asm_exc_invalid_op+0x1f/0x30
[ 224.010867] ? pci_disable_device+0xe5/0x100
[ 224.010869] ? pci_disable_device+0xe5/0x100
[ 224.010871] ? kfree+0x21a/0x2b0
[ 224.010873] pcim_disable_device+0x20/0x30
[ 224.010875] devm_action_release+0x16/0x20
[ 224.010878] release_nodes+0x47/0xc0
[ 224.010880] devres_release_all+0x9f/0xe0
[ 224.010883] device_unbind_cleanup+0x12/0x80
[ 224.010885] device_release_driver_internal+0x1ca/0x210
[ 224.010887] driver_detach+0x4e/0xa0
[ 224.010889] bus_remove_driver+0x6f/0xf0
[ 224.010890] driver_unregister+0x35/0x60
[ 224.010892] pci_unregister_driver+0x44/0x90
[ 224.010894] proc_thermal_pci_driver_exit+0x14/0x5f0 [processor_thermal_device_pci]
...
[ 224.010921] ---[ end trace 0000000000000000 ]---
Remove the excess pci_disable_device() calls.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix uninitialized pointer free in add_inode_ref()
The add_inode_ref() function does not initialize the "name" struct when
it is declared. If any of the following calls to "read_one_inode()
returns NULL,
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
inode = read_one_inode(root, inode_objectid);
if (!inode) {
ret = -EIO;
goto out;
}
then "name.name" would be freed on "out" before being initialized.
out:
...
kfree(name.name);
This issue was reported by Coverity with CID 1526744. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix uninitialized pointer free on read_alloc_one_name() error
The function read_alloc_one_name() does not initialize the name field of
the passed fscrypt_str struct if kmalloc fails to allocate the
corresponding buffer. Thus, it is not guaranteed that
fscrypt_str.name is initialized when freeing it.
This is a follow-up to the linked patch that fixes the remaining
instances of the bug introduced by commit e43eec81c516 ("btrfs: use
struct qstr instead of name and namelen pairs"). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix user-after-free from session log off
There is racy issue between smb2 session log off and smb2 session setup.
It will cause user-after-free from session log off.
This add session_lock when setting SMB2_SESSION_EXPIRED and referece
count to session struct not to free session while it is being used. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: fix UaF read in mptcp_pm_nl_rm_addr_or_subflow
Syzkaller reported this splat:
==================================================================
BUG: KASAN: slab-use-after-free in mptcp_pm_nl_rm_addr_or_subflow+0xb44/0xcc0 net/mptcp/pm_netlink.c:881
Read of size 4 at addr ffff8880569ac858 by task syz.1.2799/14662
CPU: 0 UID: 0 PID: 14662 Comm: syz.1.2799 Not tainted 6.12.0-rc2-syzkaller-00307-g36c254515dc6 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
mptcp_pm_nl_rm_addr_or_subflow+0xb44/0xcc0 net/mptcp/pm_netlink.c:881
mptcp_pm_nl_rm_subflow_received net/mptcp/pm_netlink.c:914 [inline]
mptcp_nl_remove_id_zero_address+0x305/0x4a0 net/mptcp/pm_netlink.c:1572
mptcp_pm_nl_del_addr_doit+0x5c9/0x770 net/mptcp/pm_netlink.c:1603
genl_family_rcv_msg_doit+0x202/0x2f0 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x565/0x800 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x165/0x410 net/netlink/af_netlink.c:2551
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1331 [inline]
netlink_unicast+0x53c/0x7f0 net/netlink/af_netlink.c:1357
netlink_sendmsg+0x8b8/0xd70 net/netlink/af_netlink.c:1901
sock_sendmsg_nosec net/socket.c:729 [inline]
__sock_sendmsg net/socket.c:744 [inline]
____sys_sendmsg+0x9ae/0xb40 net/socket.c:2607
___sys_sendmsg+0x135/0x1e0 net/socket.c:2661
__sys_sendmsg+0x117/0x1f0 net/socket.c:2690
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
RIP: 0023:0xf7fe4579
Code: b8 01 10 06 03 74 b4 01 10 07 03 74 b0 01 10 08 03 74 d8 01 00 00 00 00 00 00 00 00 00 00 00 00 00 51 52 55 89 e5 0f 34 cd 80 <5d> 5a 59 c3 90 90 90 90 8d b4 26 00 00 00 00 8d b4 26 00 00 00 00
RSP: 002b:00000000f574556c EFLAGS: 00000296 ORIG_RAX: 0000000000000172
RAX: ffffffffffffffda RBX: 000000000000000b RCX: 0000000020000140
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000296 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Allocated by task 5387:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kmalloc_noprof include/linux/slab.h:878 [inline]
kzalloc_noprof include/linux/slab.h:1014 [inline]
subflow_create_ctx+0x87/0x2a0 net/mptcp/subflow.c:1803
subflow_ulp_init+0xc3/0x4d0 net/mptcp/subflow.c:1956
__tcp_set_ulp net/ipv4/tcp_ulp.c:146 [inline]
tcp_set_ulp+0x326/0x7f0 net/ipv4/tcp_ulp.c:167
mptcp_subflow_create_socket+0x4ae/0x10a0 net/mptcp/subflow.c:1764
__mptcp_subflow_connect+0x3cc/0x1490 net/mptcp/subflow.c:1592
mptcp_pm_create_subflow_or_signal_addr+0xbda/0x23a0 net/mptcp/pm_netlink.c:642
mptcp_pm_nl_fully_established net/mptcp/pm_netlink.c:650 [inline]
mptcp_pm_nl_work+0x3a1/0x4f0 net/mptcp/pm_netlink.c:943
mptcp_worker+0x15a/0x1240 net/mptcp/protocol.c:2777
process_one_work+0x958/0x1b30 kernel/workqueue.c:3229
process_scheduled_works kernel/workqueue.c:3310 [inline]
worker_thread+0x6c8/0xf00 kernel/workqueue.c:3391
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/ke
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix mptcp DSS corruption due to large pmtu xmit
Syzkaller was able to trigger a DSS corruption:
TCP: request_sock_subflow_v4: Possible SYN flooding on port [::]:20002. Sending cookies.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 5227 at net/mptcp/protocol.c:695 __mptcp_move_skbs_from_subflow+0x20a9/0x21f0 net/mptcp/protocol.c:695
Modules linked in:
CPU: 0 UID: 0 PID: 5227 Comm: syz-executor350 Not tainted 6.11.0-syzkaller-08829-gaf9c191ac2a0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
RIP: 0010:__mptcp_move_skbs_from_subflow+0x20a9/0x21f0 net/mptcp/protocol.c:695
Code: 0f b6 dc 31 ff 89 de e8 b5 dd ea f5 89 d8 48 81 c4 50 01 00 00 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 98 da ea f5 90 <0f> 0b 90 e9 47 ff ff ff e8 8a da ea f5 90 0f 0b 90 e9 99 e0 ff ff
RSP: 0018:ffffc90000006db8 EFLAGS: 00010246
RAX: ffffffff8ba9df18 RBX: 00000000000055f0 RCX: ffff888030023c00
RDX: 0000000000000100 RSI: 00000000000081e5 RDI: 00000000000055f0
RBP: 1ffff110062bf1ae R08: ffffffff8ba9cf12 R09: 1ffff110062bf1b8
R10: dffffc0000000000 R11: ffffed10062bf1b9 R12: 0000000000000000
R13: dffffc0000000000 R14: 00000000700cec61 R15: 00000000000081e5
FS: 000055556679c380(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020287000 CR3: 0000000077892000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
move_skbs_to_msk net/mptcp/protocol.c:811 [inline]
mptcp_data_ready+0x29c/0xa90 net/mptcp/protocol.c:854
subflow_data_ready+0x34a/0x920 net/mptcp/subflow.c:1490
tcp_data_queue+0x20fd/0x76c0 net/ipv4/tcp_input.c:5283
tcp_rcv_established+0xfba/0x2020 net/ipv4/tcp_input.c:6237
tcp_v4_do_rcv+0x96d/0xc70 net/ipv4/tcp_ipv4.c:1915
tcp_v4_rcv+0x2dc0/0x37f0 net/ipv4/tcp_ipv4.c:2350
ip_protocol_deliver_rcu+0x22e/0x440 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x341/0x5f0 net/ipv4/ip_input.c:233
NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314
NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314
__netif_receive_skb_one_core net/core/dev.c:5662 [inline]
__netif_receive_skb+0x2bf/0x650 net/core/dev.c:5775
process_backlog+0x662/0x15b0 net/core/dev.c:6107
__napi_poll+0xcb/0x490 net/core/dev.c:6771
napi_poll net/core/dev.c:6840 [inline]
net_rx_action+0x89b/0x1240 net/core/dev.c:6962
handle_softirqs+0x2c5/0x980 kernel/softirq.c:554
do_softirq+0x11b/0x1e0 kernel/softirq.c:455
</IRQ>
<TASK>
__local_bh_enable_ip+0x1bb/0x200 kernel/softirq.c:382
local_bh_enable include/linux/bottom_half.h:33 [inline]
rcu_read_unlock_bh include/linux/rcupdate.h:919 [inline]
__dev_queue_xmit+0x1764/0x3e80 net/core/dev.c:4451
dev_queue_xmit include/linux/netdevice.h:3094 [inline]
neigh_hh_output include/net/neighbour.h:526 [inline]
neigh_output include/net/neighbour.h:540 [inline]
ip_finish_output2+0xd41/0x1390 net/ipv4/ip_output.c:236
ip_local_out net/ipv4/ip_output.c:130 [inline]
__ip_queue_xmit+0x118c/0x1b80 net/ipv4/ip_output.c:536
__tcp_transmit_skb+0x2544/0x3b30 net/ipv4/tcp_output.c:1466
tcp_transmit_skb net/ipv4/tcp_output.c:1484 [inline]
tcp_mtu_probe net/ipv4/tcp_output.c:2547 [inline]
tcp_write_xmit+0x641d/0x6bf0 net/ipv4/tcp_output.c:2752
__tcp_push_pending_frames+0x9b/0x360 net/ipv4/tcp_output.c:3015
tcp_push_pending_frames include/net/tcp.h:2107 [inline]
tcp_data_snd_check net/ipv4/tcp_input.c:5714 [inline]
tcp_rcv_established+0x1026/0x2020 net/ipv4/tcp_input.c:6239
tcp_v4_do_rcv+0x96d/0xc70 net/ipv4/tcp_ipv4.c:1915
sk_backlog_rcv include/net/sock.h:1113 [inline]
__release_sock+0x214/0x350 net/core/sock.c:3072
release_sock+0x61/0x1f0 net/core/sock.c:3626
mptcp_push_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
blk-rq-qos: fix crash on rq_qos_wait vs. rq_qos_wake_function race
We're seeing crashes from rq_qos_wake_function that look like this:
BUG: unable to handle page fault for address: ffffafe180a40084
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 100000067 P4D 100000067 PUD 10027c067 PMD 10115d067 PTE 0
Oops: Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 17 UID: 0 PID: 0 Comm: swapper/17 Not tainted 6.12.0-rc3-00013-geca631b8fe80 #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:_raw_spin_lock_irqsave+0x1d/0x40
Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 9c 41 5c fa 65 ff 05 62 97 30 4c 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 0a 4c 89 e0 41 5c c3 cc cc cc cc 89 c6 e8 2c 0b 00
RSP: 0018:ffffafe180580ca0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: ffffafe180a3f7a8 RCX: 0000000000000011
RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffffafe180a40084
RBP: 0000000000000000 R08: 00000000001e7240 R09: 0000000000000011
R10: 0000000000000028 R11: 0000000000000888 R12: 0000000000000002
R13: ffffafe180a40084 R14: 0000000000000000 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff9aaf1f280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffafe180a40084 CR3: 000000010e428002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
try_to_wake_up+0x5a/0x6a0
rq_qos_wake_function+0x71/0x80
__wake_up_common+0x75/0xa0
__wake_up+0x36/0x60
scale_up.part.0+0x50/0x110
wb_timer_fn+0x227/0x450
...
So rq_qos_wake_function() calls wake_up_process(data->task), which calls
try_to_wake_up(), which faults in raw_spin_lock_irqsave(&p->pi_lock).
p comes from data->task, and data comes from the waitqueue entry, which
is stored on the waiter's stack in rq_qos_wait(). Analyzing the core
dump with drgn, I found that the waiter had already woken up and moved
on to a completely unrelated code path, clobbering what was previously
data->task. Meanwhile, the waker was passing the clobbered garbage in
data->task to wake_up_process(), leading to the crash.
What's happening is that in between rq_qos_wake_function() deleting the
waitqueue entry and calling wake_up_process(), rq_qos_wait() is finding
that it already got a token and returning. The race looks like this:
rq_qos_wait() rq_qos_wake_function()
==============================================================
prepare_to_wait_exclusive()
data->got_token = true;
list_del_init(&curr->entry);
if (data.got_token)
break;
finish_wait(&rqw->wait, &data.wq);
^- returns immediately because
list_empty_careful(&wq_entry->entry)
is true
... return, go do something else ...
wake_up_process(data->task)
(NO LONGER VALID!)-^
Normally, finish_wait() is supposed to synchronize against the waker.
But, as noted above, it is returning immediately because the waitqueue
entry has already been removed from the waitqueue.
The bug is that rq_qos_wake_function() is accessing the waitqueue entry
AFTER deleting it. Note that autoremove_wake_function() wakes the waiter
and THEN deletes the waitqueue entry, which is the proper order.
Fix it by swapping the order. We also need to use
list_del_init_careful() to match the list_empty_careful() in
finish_wait(). |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Call iso_exit() on module unload
If iso_init() has been called, iso_exit() must be called on module
unload. Without that, the struct proto that iso_init() registered with
proto_register() becomes invalid, which could cause unpredictable
problems later. In my case, with CONFIG_LIST_HARDENED and
CONFIG_BUG_ON_DATA_CORRUPTION enabled, loading the module again usually
triggers this BUG():
list_add corruption. next->prev should be prev (ffffffffb5355fd0),
but was 0000000000000068. (next=ffffffffc0a010d0).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:29!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 4159 Comm: modprobe Not tainted 6.10.11-4+bt2-ao-desktop #1
RIP: 0010:__list_add_valid_or_report+0x61/0xa0
...
__list_add_valid_or_report+0x61/0xa0
proto_register+0x299/0x320
hci_sock_init+0x16/0xc0 [bluetooth]
bt_init+0x68/0xd0 [bluetooth]
__pfx_bt_init+0x10/0x10 [bluetooth]
do_one_initcall+0x80/0x2f0
do_init_module+0x8b/0x230
__do_sys_init_module+0x15f/0x190
do_syscall_64+0x68/0x110
... |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: ISO: Fix multiple init when debugfs is disabled
If bt_debugfs is not created successfully, which happens if either
CONFIG_DEBUG_FS or CONFIG_DEBUG_FS_ALLOW_ALL is unset, then iso_init()
returns early and does not set iso_inited to true. This means that a
subsequent call to iso_init() will result in duplicate calls to
proto_register(), bt_sock_register(), etc.
With CONFIG_LIST_HARDENED and CONFIG_BUG_ON_DATA_CORRUPTION enabled, the
duplicate call to proto_register() triggers this BUG():
list_add double add: new=ffffffffc0b280d0, prev=ffffffffbab56250,
next=ffffffffc0b280d0.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:35!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 2 PID: 887 Comm: bluetoothd Not tainted 6.10.11-1-ao-desktop #1
RIP: 0010:__list_add_valid_or_report+0x9a/0xa0
...
__list_add_valid_or_report+0x9a/0xa0
proto_register+0x2b5/0x340
iso_init+0x23/0x150 [bluetooth]
set_iso_socket_func+0x68/0x1b0 [bluetooth]
kmem_cache_free+0x308/0x330
hci_sock_sendmsg+0x990/0x9e0 [bluetooth]
__sock_sendmsg+0x7b/0x80
sock_write_iter+0x9a/0x110
do_iter_readv_writev+0x11d/0x220
vfs_writev+0x180/0x3e0
do_writev+0xca/0x100
...
This change removes the early return. The check for iso_debugfs being
NULL was unnecessary, it is always NULL when iso_inited is false. |
| In the Linux kernel, the following vulnerability has been resolved:
parport: Proper fix for array out-of-bounds access
The recent fix for array out-of-bounds accesses replaced sprintf()
calls blindly with snprintf(). However, since snprintf() returns the
would-be-printed size, not the actually output size, the length
calculation can still go over the given limit.
Use scnprintf() instead of snprintf(), which returns the actually
output letters, for addressing the potential out-of-bounds access
properly. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: Fix use-after-free in gsm_cleanup_mux
BUG: KASAN: slab-use-after-free in gsm_cleanup_mux+0x77b/0x7b0
drivers/tty/n_gsm.c:3160 [n_gsm]
Read of size 8 at addr ffff88815fe99c00 by task poc/3379
CPU: 0 UID: 0 PID: 3379 Comm: poc Not tainted 6.11.0+ #56
Hardware name: VMware, Inc. VMware Virtual Platform/440BX
Desktop Reference Platform, BIOS 6.00 11/12/2020
Call Trace:
<TASK>
gsm_cleanup_mux+0x77b/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm]
__pfx_gsm_cleanup_mux+0x10/0x10 drivers/tty/n_gsm.c:3124 [n_gsm]
__pfx_sched_clock_cpu+0x10/0x10 kernel/sched/clock.c:389
update_load_avg+0x1c1/0x27b0 kernel/sched/fair.c:4500
__pfx_min_vruntime_cb_rotate+0x10/0x10 kernel/sched/fair.c:846
__rb_insert_augmented+0x492/0xbf0 lib/rbtree.c:161
gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm]
_raw_spin_lock_irqsave+0x92/0xf0 arch/x86/include/asm/atomic.h:107
__pfx_gsmld_ioctl+0x10/0x10 drivers/tty/n_gsm.c:3822 [n_gsm]
ktime_get+0x5e/0x140 kernel/time/timekeeping.c:195
ldsem_down_read+0x94/0x4e0 arch/x86/include/asm/atomic64_64.h:79
__pfx_ldsem_down_read+0x10/0x10 drivers/tty/tty_ldsem.c:338
__pfx_do_vfs_ioctl+0x10/0x10 fs/ioctl.c:805
tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818
Allocated by task 65:
gsm_data_alloc.constprop.0+0x27/0x190 drivers/tty/n_gsm.c:926 [n_gsm]
gsm_send+0x2c/0x580 drivers/tty/n_gsm.c:819 [n_gsm]
gsm1_receive+0x547/0xad0 drivers/tty/n_gsm.c:3038 [n_gsm]
gsmld_receive_buf+0x176/0x280 drivers/tty/n_gsm.c:3609 [n_gsm]
tty_ldisc_receive_buf+0x101/0x1e0 drivers/tty/tty_buffer.c:391
tty_port_default_receive_buf+0x61/0xa0 drivers/tty/tty_port.c:39
flush_to_ldisc+0x1b0/0x750 drivers/tty/tty_buffer.c:445
process_scheduled_works+0x2b0/0x10d0 kernel/workqueue.c:3229
worker_thread+0x3dc/0x950 kernel/workqueue.c:3391
kthread+0x2a3/0x370 kernel/kthread.c:389
ret_from_fork+0x2d/0x70 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:257
Freed by task 3367:
kfree+0x126/0x420 mm/slub.c:4580
gsm_cleanup_mux+0x36c/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm]
gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm]
tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818
[Analysis]
gsm_msg on the tx_ctrl_list or tx_data_list of gsm_mux
can be freed by multi threads through ioctl,which leads
to the occurrence of uaf. Protect it by gsm tx lock. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/bugs: Use code segment selector for VERW operand
Robert Gill reported below #GP in 32-bit mode when dosemu software was
executing vm86() system call:
general protection fault: 0000 [#1] PREEMPT SMP
CPU: 4 PID: 4610 Comm: dosemu.bin Not tainted 6.6.21-gentoo-x86 #1
Hardware name: Dell Inc. PowerEdge 1950/0H723K, BIOS 2.7.0 10/30/2010
EIP: restore_all_switch_stack+0xbe/0xcf
EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: 00000000
ESI: 00000000 EDI: 00000000 EBP: 00000000 ESP: ff8affdc
DS: 0000 ES: 0000 FS: 0000 GS: 0033 SS: 0068 EFLAGS: 00010046
CR0: 80050033 CR2: 00c2101c CR3: 04b6d000 CR4: 000406d0
Call Trace:
show_regs+0x70/0x78
die_addr+0x29/0x70
exc_general_protection+0x13c/0x348
exc_bounds+0x98/0x98
handle_exception+0x14d/0x14d
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
This only happens in 32-bit mode when VERW based mitigations like MDS/RFDS
are enabled. This is because segment registers with an arbitrary user value
can result in #GP when executing VERW. Intel SDM vol. 2C documents the
following behavior for VERW instruction:
#GP(0) - If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.
CLEAR_CPU_BUFFERS macro executes VERW instruction before returning to user
space. Use %cs selector to reference VERW operand. This ensures VERW will
not #GP for an arbitrary user %ds.
[ mingo: Fixed the SOB chain. ] |