| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
block: initialize integrity buffer to zero before writing it to media
Metadata added by bio_integrity_prep is using plain kmalloc, which leads
to random kernel memory being written media. For PI metadata this is
limited to the app tag that isn't used by kernel generated metadata,
but for non-PI metadata the entire buffer leaks kernel memory.
Fix this by adding the __GFP_ZERO flag to allocations for writes. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: Prevent UAF in proc_cpuset_show()
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/<pid>/cpuset repeatly.
3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/
$umount /sys/fs/cgroup/cpuset/ repeatly.
The race that cause this bug can be shown as below:
(umount) | (cat /proc/<pid>/cpuset)
css_release | proc_cpuset_show
css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id);
css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...);
cgroup_destroy_root | mutex_lock(&cgroup_mutex);
rebind_subsystems |
cgroup_free_root |
| // cgrp was freed, UAF
| cgroup_path_ns_locked(cgrp,..);
When the cpuset is initialized, the root node top_cpuset.css.cgrp
will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will
allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated
&cgroup_root.cgrp. When the umount operation is executed,
top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp.
The problem is that when rebinding to cgrp_dfl_root, there are cases
where the cgroup_root allocated by setting up the root for cgroup v1
is cached. This could lead to a Use-After-Free (UAF) if it is
subsequently freed. The descendant cgroups of cgroup v1 can only be
freed after the css is released. However, the css of the root will never
be released, yet the cgroup_root should be freed when it is unmounted.
This means that obtaining a reference to the css of the root does
not guarantee that css.cgrp->root will not be freed.
Fix this problem by using rcu_read_lock in proc_cpuset_show().
As cgroup_root is kfree_rcu after commit d23b5c577715
("cgroup: Make operations on the cgroup root_list RCU safe"),
css->cgroup won't be freed during the critical section.
To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to
replace task_get_css with task_css.
[1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd |
| In the Linux kernel, the following vulnerability has been resolved:
lib: objagg: Fix general protection fault
The library supports aggregation of objects into other objects only if
the parent object does not have a parent itself. That is, nesting is not
supported.
Aggregation happens in two cases: Without and with hints, where hints
are a pre-computed recommendation on how to aggregate the provided
objects.
Nesting is not possible in the first case due to a check that prevents
it, but in the second case there is no check because the assumption is
that nesting cannot happen when creating objects based on hints. The
violation of this assumption leads to various warnings and eventually to
a general protection fault [1].
Before fixing the root cause, error out when nesting happens and warn.
[1]
general protection fault, probably for non-canonical address 0xdead000000000d90: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1083 Comm: kworker/1:9 Tainted: G W 6.9.0-rc6-custom-gd9b4f1cca7fb #7
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_sp_acl_erp_bf_insert+0x25/0x80
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_entry_add+0x256/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270
mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: Fix array index mistake in rtw89_sta_info_get_iter()
In rtw89_sta_info_get_iter() 'status->he_gi' is compared to array size.
But then 'rate->he_gi' is used as array index instead of 'status->he_gi'.
This can lead to go beyond array boundaries in case of 'rate->he_gi' is
not equal to 'status->he_gi' and is bigger than array size. Looks like
"copy-paste" mistake.
Fix this mistake by replacing 'rate->he_gi' with 'status->he_gi'.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: fix invalid wait context of page_pool_destroy()
If the driver uses a page pool, it creates a page pool with
page_pool_create().
The reference count of page pool is 1 as default.
A page pool will be destroyed only when a reference count reaches 0.
page_pool_destroy() is used to destroy page pool, it decreases a
reference count.
When a page pool is destroyed, ->disconnect() is called, which is
mem_allocator_disconnect().
This function internally acquires mutex_lock().
If the driver uses XDP, it registers a memory model with
xdp_rxq_info_reg_mem_model().
The xdp_rxq_info_reg_mem_model() internally increases a page pool
reference count if a memory model is a page pool.
Now the reference count is 2.
To destroy a page pool, the driver should call both page_pool_destroy()
and xdp_unreg_mem_model().
The xdp_unreg_mem_model() internally calls page_pool_destroy().
Only page_pool_destroy() decreases a reference count.
If a driver calls page_pool_destroy() then xdp_unreg_mem_model(), we
will face an invalid wait context warning.
Because xdp_unreg_mem_model() calls page_pool_destroy() with
rcu_read_lock().
The page_pool_destroy() internally acquires mutex_lock().
Splat looks like:
=============================
[ BUG: Invalid wait context ]
6.10.0-rc6+ #4 Tainted: G W
-----------------------------
ethtool/1806 is trying to lock:
ffffffff90387b90 (mem_id_lock){+.+.}-{4:4}, at: mem_allocator_disconnect+0x73/0x150
other info that might help us debug this:
context-{5:5}
3 locks held by ethtool/1806:
stack backtrace:
CPU: 0 PID: 1806 Comm: ethtool Tainted: G W 6.10.0-rc6+ #4 f916f41f172891c800f2fed
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
Call Trace:
<TASK>
dump_stack_lvl+0x7e/0xc0
__lock_acquire+0x1681/0x4de0
? _printk+0x64/0xe0
? __pfx_mark_lock.part.0+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
lock_acquire+0x1b3/0x580
? mem_allocator_disconnect+0x73/0x150
? __wake_up_klogd.part.0+0x16/0xc0
? __pfx_lock_acquire+0x10/0x10
? dump_stack_lvl+0x91/0xc0
__mutex_lock+0x15c/0x1690
? mem_allocator_disconnect+0x73/0x150
? __pfx_prb_read_valid+0x10/0x10
? mem_allocator_disconnect+0x73/0x150
? __pfx_llist_add_batch+0x10/0x10
? console_unlock+0x193/0x1b0
? lockdep_hardirqs_on+0xbe/0x140
? __pfx___mutex_lock+0x10/0x10
? tick_nohz_tick_stopped+0x16/0x90
? __irq_work_queue_local+0x1e5/0x330
? irq_work_queue+0x39/0x50
? __wake_up_klogd.part.0+0x79/0xc0
? mem_allocator_disconnect+0x73/0x150
mem_allocator_disconnect+0x73/0x150
? __pfx_mem_allocator_disconnect+0x10/0x10
? mark_held_locks+0xa5/0xf0
? rcu_is_watching+0x11/0xb0
page_pool_release+0x36e/0x6d0
page_pool_destroy+0xd7/0x440
xdp_unreg_mem_model+0x1a7/0x2a0
? __pfx_xdp_unreg_mem_model+0x10/0x10
? kfree+0x125/0x370
? bnxt_free_ring.isra.0+0x2eb/0x500
? bnxt_free_mem+0x5ac/0x2500
xdp_rxq_info_unreg+0x4a/0xd0
bnxt_free_mem+0x1356/0x2500
bnxt_close_nic+0xf0/0x3b0
? __pfx_bnxt_close_nic+0x10/0x10
? ethnl_parse_bit+0x2c6/0x6d0
? __pfx___nla_validate_parse+0x10/0x10
? __pfx_ethnl_parse_bit+0x10/0x10
bnxt_set_features+0x2a8/0x3e0
__netdev_update_features+0x4dc/0x1370
? ethnl_parse_bitset+0x4ff/0x750
? __pfx_ethnl_parse_bitset+0x10/0x10
? __pfx___netdev_update_features+0x10/0x10
? mark_held_locks+0xa5/0xf0
? _raw_spin_unlock_irqrestore+0x42/0x70
? __pm_runtime_resume+0x7d/0x110
ethnl_set_features+0x32d/0xa20
To fix this problem, it uses rhashtable_lookup_fast() instead of
rhashtable_lookup() with rcu_read_lock().
Using xa without rcu_read_lock() here is safe.
xa is freed by __xdp_mem_allocator_rcu_free() and this is called by
call_rcu() of mem_xa_remove().
The mem_xa_remove() is called by page_pool_destroy() if a reference
count reaches 0.
The xa is already protected by the reference count mechanism well in the
control plane.
So removing rcu_read_lock() for page_pool_destroy() is safe. |
| In the Linux kernel, the following vulnerability has been resolved:
leds: trigger: Unregister sysfs attributes before calling deactivate()
Triggers which have trigger specific sysfs attributes typically store
related data in trigger-data allocated by the activate() callback and
freed by the deactivate() callback.
Calling device_remove_groups() after calling deactivate() leaves a window
where the sysfs attributes show/store functions could be called after
deactivation and then operate on the just freed trigger-data.
Move the device_remove_groups() call to before deactivate() to close
this race window.
This also makes the deactivation path properly do things in reverse order
of the activation path which calls the activate() callback before calling
device_add_groups(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix infinite loop when replaying fast_commit
When doing fast_commit replay an infinite loop may occur due to an
uninitialized extent_status struct. ext4_ext_determine_insert_hole() does
not detect the replay and calls ext4_es_find_extent_range(), which will
return immediately without initializing the 'es' variable.
Because 'es' contains garbage, an integer overflow may happen causing an
infinite loop in this function, easily reproducible using fstest generic/039.
This commit fixes this issue by unconditionally initializing the structure
in function ext4_es_find_extent_range().
Thanks to Zhang Yi, for figuring out the real problem! |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: keystone: Fix NULL pointer dereference in case of DT error in ks_pcie_setup_rc_app_regs()
If IORESOURCE_MEM is not provided in Device Tree due to
any error, resource_list_first_type() will return NULL and
pci_parse_request_of_pci_ranges() will just emit a warning.
This will cause a NULL pointer dereference. Fix this bug by adding NULL
return check.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: missing check virtio
Two missing check in virtio_net_hdr_to_skb() allowed syzbot
to crash kernels again
1. After the skb_segment function the buffer may become non-linear
(nr_frags != 0), but since the SKBTX_SHARED_FRAG flag is not set anywhere
the __skb_linearize function will not be executed, then the buffer will
remain non-linear. Then the condition (offset >= skb_headlen(skb))
becomes true, which causes WARN_ON_ONCE in skb_checksum_help.
2. The struct sk_buff and struct virtio_net_hdr members must be
mathematically related.
(gso_size) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) may be 0 if division is without remainder.
offset+2 (4191) > skb_headlen() (1116)
WARNING: CPU: 1 PID: 5084 at net/core/dev.c:3303 skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Modules linked in:
CPU: 1 PID: 5084 Comm: syz-executor336 Not tainted 6.7.0-rc3-syzkaller-00014-gdf60cee26a2e #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
RIP: 0010:skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Code: 89 e8 83 e0 07 83 c0 03 38 d0 7c 08 84 d2 0f 85 52 01 00 00 44 89 e2 2b 53 74 4c 89 ee 48 c7 c7 40 57 e9 8b e8 af 8f dd f8 90 <0f> 0b 90 90 e9 87 fe ff ff e8 40 0f 6e f9 e9 4b fa ff ff 48 89 ef
RSP: 0018:ffffc90003a9f338 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888025125780 RCX: ffffffff814db209
RDX: ffff888015393b80 RSI: ffffffff814db216 RDI: 0000000000000001
RBP: ffff8880251257f4 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 000000000000045c
R13: 000000000000105f R14: ffff8880251257f0 R15: 000000000000105d
FS: 0000555555c24380(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000002000f000 CR3: 0000000023151000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ip_do_fragment+0xa1b/0x18b0 net/ipv4/ip_output.c:777
ip_fragment.constprop.0+0x161/0x230 net/ipv4/ip_output.c:584
ip_finish_output_gso net/ipv4/ip_output.c:286 [inline]
__ip_finish_output net/ipv4/ip_output.c:308 [inline]
__ip_finish_output+0x49c/0x650 net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip_output+0x13b/0x2a0 net/ipv4/ip_output.c:433
dst_output include/net/dst.h:451 [inline]
ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:129
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ipip6_tunnel_xmit net/ipv6/sit.c:1034 [inline]
sit_tunnel_xmit+0xed2/0x28f0 net/ipv6/sit.c:1076
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3545 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3561
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4346
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24ca/0x5240 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0xd5/0x180 net/socket.c:745
__sys_sendto+0x255/0x340 net/socket.c:2190
__do_sys_sendto net/socket.c:2202 [inline]
__se_sys_sendto net/socket.c:2198 [inline]
__x64_sys_sendto+0xe0/0x1b0 net/socket.c:2198
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x40/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Found by Linux Verification Center (linuxtesting.org) with Syzkaller |
| DISPUTE NOTE: this issue does not pose a security risk as it (according to analysis by the original software developer, NLnet Labs) falls within the expected functionality and security controls of the application. Red Hat has made a claim that there is a security risk within Red Hat products. NLnet Labs has no further information about the claim, and suggests that affected Red Hat customers refer to available Red Hat documentation or support channels. ORIGINAL DESCRIPTION: A heap-buffer-overflow flaw was found in the cfg_mark_ports function within Unbound's config_file.c, which can lead to memory corruption. This issue could allow an attacker with local access to provide specially crafted input, potentially causing the application to crash or allowing arbitrary code execution. This could result in a denial of service or unauthorized actions on the system. |
| DISPUTE NOTE: this issue does not pose a security risk as it (according to analysis by the original software developer, NLnet Labs) falls within the expected functionality and security controls of the application. Red Hat has made a claim that there is a security risk within Red Hat products. NLnet Labs has no further information about the claim, and suggests that affected Red Hat customers refer to available Red Hat documentation or support channels. ORIGINAL DESCRIPTION: A NULL pointer dereference flaw was found in the ub_ctx_set_fwd function in Unbound. This issue could allow an attacker who can invoke specific sequences of API calls to cause a segmentation fault. When certain API functions such as ub_ctx_set_fwd and ub_ctx_resolvconf are called in a particular order, the program attempts to read from a NULL pointer, leading to a crash. This issue can result in a denial of service by causing the application to terminate unexpectedly. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: properly dereference pe in ip_vs_add_service
Use pe directly to resolve sparse warning:
net/netfilter/ipvs/ip_vs_ctl.c:1471:27: warning: dereference of noderef expression |
| In the Linux kernel, the following vulnerability has been resolved:
net: flow_dissector: use DEBUG_NET_WARN_ON_ONCE
The following splat is easy to reproduce upstream as well as in -stable
kernels. Florian Westphal provided the following commit:
d1dab4f71d37 ("net: add and use __skb_get_hash_symmetric_net")
but this complementary fix has been also suggested by Willem de Bruijn
and it can be easily backported to -stable kernel which consists in
using DEBUG_NET_WARN_ON_ONCE instead to silence the following splat
given __skb_get_hash() is used by the nftables tracing infrastructure to
to identify packets in traces.
[69133.561393] ------------[ cut here ]------------
[69133.561404] WARNING: CPU: 0 PID: 43576 at net/core/flow_dissector.c:1104 __skb_flow_dissect+0x134f/
[...]
[69133.561944] CPU: 0 PID: 43576 Comm: socat Not tainted 6.10.0-rc7+ #379
[69133.561959] RIP: 0010:__skb_flow_dissect+0x134f/0x2ad0
[69133.561970] Code: 83 f9 04 0f 84 b3 00 00 00 45 85 c9 0f 84 aa 00 00 00 41 83 f9 02 0f 84 81 fc ff
ff 44 0f b7 b4 24 80 00 00 00 e9 8b f9 ff ff <0f> 0b e9 20 f3 ff ff 41 f6 c6 20 0f 84 e4 ef ff ff 48 8d 7b 12 e8
[69133.561979] RSP: 0018:ffffc90000006fc0 EFLAGS: 00010246
[69133.561988] RAX: 0000000000000000 RBX: ffffffff82f33e20 RCX: ffffffff81ab7e19
[69133.561994] RDX: dffffc0000000000 RSI: ffffc90000007388 RDI: ffff888103a1b418
[69133.562001] RBP: ffffc90000007310 R08: 0000000000000000 R09: 0000000000000000
[69133.562007] R10: ffffc90000007388 R11: ffffffff810cface R12: ffff888103a1b400
[69133.562013] R13: 0000000000000000 R14: ffffffff82f33e2a R15: ffffffff82f33e28
[69133.562020] FS: 00007f40f7131740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000
[69133.562027] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[69133.562033] CR2: 00007f40f7346ee0 CR3: 000000015d200001 CR4: 00000000001706f0
[69133.562040] Call Trace:
[69133.562044] <IRQ>
[69133.562049] ? __warn+0x9f/0x1a0
[ 1211.841384] ? __skb_flow_dissect+0x107e/0x2860
[...]
[ 1211.841496] ? bpf_flow_dissect+0x160/0x160
[ 1211.841753] __skb_get_hash+0x97/0x280
[ 1211.841765] ? __skb_get_hash_symmetric+0x230/0x230
[ 1211.841776] ? mod_find+0xbf/0xe0
[ 1211.841786] ? get_stack_info_noinstr+0x12/0xe0
[ 1211.841798] ? bpf_ksym_find+0x56/0xe0
[ 1211.841807] ? __rcu_read_unlock+0x2a/0x70
[ 1211.841819] nft_trace_init+0x1b9/0x1c0 [nf_tables]
[ 1211.841895] ? nft_trace_notify+0x830/0x830 [nf_tables]
[ 1211.841964] ? get_stack_info+0x2b/0x80
[ 1211.841975] ? nft_do_chain_arp+0x80/0x80 [nf_tables]
[ 1211.842044] nft_do_chain+0x79c/0x850 [nf_tables] |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mglru: fix div-by-zero in vmpressure_calc_level()
evict_folios() uses a second pass to reclaim folios that have gone through
page writeback and become clean before it finishes the first pass, since
folio_rotate_reclaimable() cannot handle those folios due to the
isolation.
The second pass tries to avoid potential double counting by deducting
scan_control->nr_scanned. However, this can result in underflow of
nr_scanned, under a condition where shrink_folio_list() does not increment
nr_scanned, i.e., when folio_trylock() fails.
The underflow can cause the divisor, i.e., scale=scanned+reclaimed in
vmpressure_calc_level(), to become zero, resulting in the following crash:
[exception RIP: vmpressure_work_fn+101]
process_one_work at ffffffffa3313f2b
Since scan_control->nr_scanned has no established semantics, the potential
double counting has minimal risks. Therefore, fix the problem by not
deducting scan_control->nr_scanned in evict_folios(). |
| In the Linux kernel, the following vulnerability has been resolved:
sysctl: always initialize i_uid/i_gid
Always initialize i_uid/i_gid inside the sysfs core so set_ownership()
can safely skip setting them.
Commit 5ec27ec735ba ("fs/proc/proc_sysctl.c: fix the default values of
i_uid/i_gid on /proc/sys inodes.") added defaults for i_uid/i_gid when
set_ownership() was not implemented. It also missed adjusting
net_ctl_set_ownership() to use the same default values in case the
computation of a better value failed. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: check dot and dotdot of dx_root before making dir indexed
Syzbot reports a issue as follows:
============================================
BUG: unable to handle page fault for address: ffffed11022e24fe
PGD 23ffee067 P4D 23ffee067 PUD 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 PID: 5079 Comm: syz-executor306 Not tainted 6.10.0-rc5-g55027e689933 #0
Call Trace:
<TASK>
make_indexed_dir+0xdaf/0x13c0 fs/ext4/namei.c:2341
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2451
ext4_rename fs/ext4/namei.c:3936 [inline]
ext4_rename2+0x26e5/0x4370 fs/ext4/namei.c:4214
[...]
============================================
The immediate cause of this problem is that there is only one valid dentry
for the block to be split during do_split, so split==0 results in out of
bounds accesses to the map triggering the issue.
do_split
unsigned split
dx_make_map
count = 1
split = count/2 = 0;
continued = hash2 == map[split - 1].hash;
---> map[4294967295]
The maximum length of a filename is 255 and the minimum block size is 1024,
so it is always guaranteed that the number of entries is greater than or
equal to 2 when do_split() is called.
But syzbot's crafted image has no dot and dotdot in dir, and the dentry
distribution in dirblock is as follows:
bus dentry1 hole dentry2 free
|xx--|xx-------------|...............|xx-------------|...............|
0 12 (8+248)=256 268 256 524 (8+256)=264 788 236 1024
So when renaming dentry1 increases its name_len length by 1, neither hole
nor free is sufficient to hold the new dentry, and make_indexed_dir() is
called.
In make_indexed_dir() it is assumed that the first two entries of the
dirblock must be dot and dotdot, so bus and dentry1 are left in dx_root
because they are treated as dot and dotdot, and only dentry2 is moved
to the new leaf block. That's why count is equal to 1.
Therefore add the ext4_check_dx_root() helper function to add more sanity
checks to dot and dotdot before starting the conversion to avoid the above
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: make sure the first directory block is not a hole
The syzbot constructs a directory that has no dirblock but is non-inline,
i.e. the first directory block is a hole. And no errors are reported when
creating files in this directory in the following flow.
ext4_mknod
...
ext4_add_entry
// Read block 0
ext4_read_dirblock(dir, block, DIRENT)
bh = ext4_bread(NULL, inode, block, 0)
if (!bh && (type == INDEX || type == DIRENT_HTREE))
// The first directory block is a hole
// But type == DIRENT, so no error is reported.
After that, we get a directory block without '.' and '..' but with a valid
dentry. This may cause some code that relies on dot or dotdot (such as
make_indexed_dir()) to crash.
Therefore when ext4_read_dirblock() finds that the first directory block
is a hole report that the filesystem is corrupted and return an error to
avoid loading corrupted data from disk causing something bad. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DPC: Fix use-after-free on concurrent DPC and hot-removal
Keith reports a use-after-free when a DPC event occurs concurrently to
hot-removal of the same portion of the hierarchy:
The dpc_handler() awaits readiness of the secondary bus below the
Downstream Port where the DPC event occurred. To do so, it polls the
config space of the first child device on the secondary bus. If that
child device is concurrently removed, accesses to its struct pci_dev
cause the kernel to oops.
That's because pci_bridge_wait_for_secondary_bus() neglects to hold a
reference on the child device. Before v6.3, the function was only
called on resume from system sleep or on runtime resume. Holding a
reference wasn't necessary back then because the pciehp IRQ thread
could never run concurrently. (On resume from system sleep, IRQs are
not enabled until after the resume_noirq phase. And runtime resume is
always awaited before a PCI device is removed.)
However starting with v6.3, pci_bridge_wait_for_secondary_bus() is also
called on a DPC event. Commit 53b54ad074de ("PCI/DPC: Await readiness
of secondary bus after reset"), which introduced that, failed to
appreciate that pci_bridge_wait_for_secondary_bus() now needs to hold a
reference on the child device because dpc_handler() and pciehp may
indeed run concurrently. The commit was backported to v5.10+ stable
kernels, so that's the oldest one affected.
Add the missing reference acquisition.
Abridged stack trace:
BUG: unable to handle page fault for address: 00000000091400c0
CPU: 15 PID: 2464 Comm: irq/53-pcie-dpc 6.9.0
RIP: pci_bus_read_config_dword+0x17/0x50
pci_dev_wait()
pci_bridge_wait_for_secondary_bus()
dpc_reset_link()
pcie_do_recovery()
dpc_handler() |
| In the Linux kernel, the following vulnerability has been resolved:
dev/parport: fix the array out-of-bounds risk
Fixed array out-of-bounds issues caused by sprintf
by replacing it with snprintf for safer data copying,
ensuring the destination buffer is not overflowed.
Below is the stack trace I encountered during the actual issue:
[ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport]
[ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm:
QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2
[ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp
[ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun
PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024
[ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace:
[ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0
[ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20
[ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c
[ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc
[ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38
[ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport] |
| In the Linux kernel, the following vulnerability has been resolved:
kobject_uevent: Fix OOB access within zap_modalias_env()
zap_modalias_env() wrongly calculates size of memory block to move, so
will cause OOB memory access issue if variable MODALIAS is not the last
one within its @env parameter, fixed by correcting size to memmove. |