Search Results (16218 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50662 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: fix memory leak in hns_roce_alloc_mr() When hns_roce_mr_enable() failed in hns_roce_alloc_mr(), mr_key is not released. Compiled test only.
CVE-2022-50659 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwrng: geode - Fix PCI device refcount leak for_each_pci_dev() is implemented by pci_get_device(). The comment of pci_get_device() says that it will increase the reference count for the returned pci_dev and also decrease the reference count for the input pci_dev @from if it is not NULL. If we break for_each_pci_dev() loop with pdev not NULL, we need to call pci_dev_put() to decrease the reference count. We add a new struct 'amd_geode_priv' to record pointer of the pci_dev and membase, and then add missing pci_dev_put() for the normal and error path.
CVE-2022-50653 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: atmel-mci: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). So fix this by checking the return value and calling mmc_free_host() in the error path.
CVE-2023-53789 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Improve page fault error reporting If IOMMU domain for device group is not setup properly then we may hit IOMMU page fault. Current page fault handler assumes that domain is always setup and it will hit NULL pointer derefence (see below sample log). Lets check whether domain is setup or not and log appropriate message. Sample log: ---------- amdgpu 0000:00:01.0: amdgpu: SE 1, SH per SE 1, CU per SH 8, active_cu_number 6 BUG: kernel NULL pointer dereference, address: 0000000000000058 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 2 PID: 56 Comm: irq/24-AMD-Vi Not tainted 6.2.0-rc2+ #89 Hardware name: xxx RIP: 0010:report_iommu_fault+0x11/0x90 [...] Call Trace: <TASK> amd_iommu_int_thread+0x60c/0x760 ? __pfx_irq_thread_fn+0x10/0x10 irq_thread_fn+0x1f/0x60 irq_thread+0xea/0x1a0 ? preempt_count_add+0x6a/0xa0 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xe9/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> [joro: Edit commit message]
CVE-2022-50652 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: uio: uio_dmem_genirq: Fix missing unlock in irq configuration Commit b74351287d4b ("uio: fix a sleep-in-atomic-context bug in uio_dmem_genirq_irqcontrol()") started calling disable_irq() without holding the spinlock because it can sleep. However, that fix introduced another bug: if interrupt is already disabled and a new disable request comes in, then the spinlock is not unlocked: root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# [ 14.851538] BUG: scheduling while atomic: bash/223/0x00000002 [ 14.851991] Modules linked in: uio_dmem_genirq uio myfpga(OE) bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper drm snd_pcm ppdev joydev psmouse snd_timer snd e1000fb_sys_fops syscopyarea parport sysfillrect soundcore sysimgblt input_leds pcspkr i2c_piix4 serio_raw floppy evbug qemu_fw_cfg mac_hid pata_acpi ip_tables x_tables autofs4 [last unloaded: parport_pc] [ 14.854206] CPU: 0 PID: 223 Comm: bash Tainted: G OE 6.0.0-rc7 #21 [ 14.854786] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 [ 14.855664] Call Trace: [ 14.855861] <TASK> [ 14.856025] dump_stack_lvl+0x4d/0x67 [ 14.856325] dump_stack+0x14/0x1a [ 14.856583] __schedule_bug.cold+0x4b/0x5c [ 14.856915] __schedule+0xe81/0x13d0 [ 14.857199] ? idr_find+0x13/0x20 [ 14.857456] ? get_work_pool+0x2d/0x50 [ 14.857756] ? __flush_work+0x233/0x280 [ 14.858068] ? __schedule+0xa95/0x13d0 [ 14.858307] ? idr_find+0x13/0x20 [ 14.858519] ? get_work_pool+0x2d/0x50 [ 14.858798] schedule+0x6c/0x100 [ 14.859009] schedule_hrtimeout_range_clock+0xff/0x110 [ 14.859335] ? tty_write_room+0x1f/0x30 [ 14.859598] ? n_tty_poll+0x1ec/0x220 [ 14.859830] ? tty_ldisc_deref+0x1a/0x20 [ 14.860090] schedule_hrtimeout_range+0x17/0x20 [ 14.860373] do_select+0x596/0x840 [ 14.860627] ? __kernel_text_address+0x16/0x50 [ 14.860954] ? poll_freewait+0xb0/0xb0 [ 14.861235] ? poll_freewait+0xb0/0xb0 [ 14.861517] ? rpm_resume+0x49d/0x780 [ 14.861798] ? common_interrupt+0x59/0xa0 [ 14.862127] ? asm_common_interrupt+0x2b/0x40 [ 14.862511] ? __uart_start.isra.0+0x61/0x70 [ 14.862902] ? __check_object_size+0x61/0x280 [ 14.863255] core_sys_select+0x1c6/0x400 [ 14.863575] ? vfs_write+0x1c9/0x3d0 [ 14.863853] ? vfs_write+0x1c9/0x3d0 [ 14.864121] ? _copy_from_user+0x45/0x70 [ 14.864526] do_pselect.constprop.0+0xb3/0xf0 [ 14.864893] ? do_syscall_64+0x6d/0x90 [ 14.865228] ? do_syscall_64+0x6d/0x90 [ 14.865556] __x64_sys_pselect6+0x76/0xa0 [ 14.865906] do_syscall_64+0x60/0x90 [ 14.866214] ? syscall_exit_to_user_mode+0x2a/0x50 [ 14.866640] ? do_syscall_64+0x6d/0x90 [ 14.866972] ? do_syscall_64+0x6d/0x90 [ 14.867286] ? do_syscall_64+0x6d/0x90 [ 14.867626] entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] stripped [ 14.872959] </TASK> ('myfpga' is a simple 'uio_dmem_genirq' driver I wrote to test this) The implementation of "uio_dmem_genirq" was based on "uio_pdrv_genirq" and it is used in a similar manner to the "uio_pdrv_genirq" driver with respect to interrupt configuration and handling. At the time "uio_dmem_genirq" was introduced, both had the same implementation of the 'uio_info' handlers irqcontrol() and handler(). Then commit 34cb27528398 ("UIO: Fix concurrency issue"), which was only applied to "uio_pdrv_genirq", ended up making them a little different. That commit, among other things, changed disable_irq() to disable_irq_nosync() in the implementation of irqcontrol(). The motivation there was to avoid a deadlock between irqcontrol() and handler(), since it added a spinlock in the irq handler, and disable_irq() waits for the completion of the irq handler. By changing disable_irq() to disable_irq_nosync() in irqcontrol(), we also avoid the sleeping-whil ---truncated---
CVE-2022-50651 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ethtool: eeprom: fix null-deref on genl_info in dump The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on genl_info in dump") is also needed for ethtool eeprom.
CVE-2023-53828 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_add_adv_monitor() KSAN reports use-after-free in hci_add_adv_monitor(). While adding an adv monitor, hci_add_adv_monitor() calls -> msft_add_monitor_pattern() calls -> msft_add_monitor_sync() calls -> msft_le_monitor_advertisement_cb() calls in an error case -> hci_free_adv_monitor() which frees the *moniter. This is referenced by bt_dev_dbg() in hci_add_adv_monitor(). Fix the bt_dev_dbg() by using handle instead of monitor->handle.
CVE-2023-53798 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ethtool: Fix uninitialized number of lanes It is not possible to set the number of lanes when setting link modes using the legacy IOCTL ethtool interface. Since 'struct ethtool_link_ksettings' is not initialized in this path, drivers receive an uninitialized number of lanes in 'struct ethtool_link_ksettings::lanes'. When this information is later queried from drivers, it results in the ethtool code making decisions based on uninitialized memory, leading to the following KMSAN splat [1]. In practice, this most likely only happens with the tun driver that simply returns whatever it got in the set operation. As far as I can tell, this uninitialized memory is not leaked to user space thanks to the 'ethtool_ops->cap_link_lanes_supported' check in linkmodes_prepare_data(). Fix by initializing the structure in the IOCTL path. Did not find any more call sites that pass an uninitialized structure when calling 'ethtool_ops::set_link_ksettings()'. [1] BUG: KMSAN: uninit-value in ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline] BUG: KMSAN: uninit-value in ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333 ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline] ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333 ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640 genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline] genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065 netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0xa24/0xe40 net/socket.c:2501 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555 __sys_sendmsg net/socket.c:2584 [inline] __do_sys_sendmsg net/socket.c:2593 [inline] __se_sys_sendmsg net/socket.c:2591 [inline] __x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: tun_get_link_ksettings+0x37/0x60 drivers/net/tun.c:3544 __ethtool_get_link_ksettings+0x17b/0x260 net/ethtool/ioctl.c:441 ethnl_set_linkmodes+0xee/0x19d0 net/ethtool/linkmodes.c:327 ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640 genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline] genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065 netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0xa24/0xe40 net/socket.c:2501 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555 __sys_sendmsg net/socket.c:2584 [inline] __do_sys_sendmsg net/socket.c:2593 [inline] __se_sys_sendmsg net/socket.c:2591 [inline] __x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: tun_set_link_ksettings+0x37/0x60 drivers/net/tun.c:3553 ethtool_set_link_ksettings+0x600/0x690 net/ethtool/ioctl.c:609 __dev_ethtool net/ethtool/ioctl.c:3024 [inline] dev_ethtool+0x1db9/0x2a70 net/ethtool/ioctl.c:3078 dev_ioctl+0xb07/0x1270 net/core/dev_ioctl.c:524 sock_do_ioctl+0x295/0x540 net/socket.c:1213 sock_i ---truncated---
CVE-2022-50642 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_typec: zero out stale pointers `cros_typec_get_switch_handles` allocates four pointers when obtaining type-c switch handles. These pointers are all freed if failing to obtain any of them; therefore, pointers in `port` become stale. The stale pointers eventually cause use-after-free or double free in later code paths. Zeroing out all pointer fields after freeing to eliminate these stale pointers.
CVE-2023-53779 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mfd: dln2: Fix memory leak in dln2_probe() When dln2_setup_rx_urbs() in dln2_probe() fails, error out_free forgets to call usb_put_dev() to decrease the refcount of dln2->usb_dev. Fix this by adding usb_put_dev() in the error handling code of dln2_probe().
CVE-2022-50644 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe pm_runtime_get_sync() will increment pm usage counter. Forgetting to putting operation will result in reference leak. Add missing pm_runtime_put_sync in some error paths.
CVE-2023-53777 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: erofs: kill hooked chains to avoid loops on deduplicated compressed images After heavily stressing EROFS with several images which include a hand-crafted image of repeated patterns for more than 46 days, I found two chains could be linked with each other almost simultaneously and form a loop so that the entire loop won't be submitted. As a consequence, the corresponding file pages will remain locked forever. It can be _only_ observed on data-deduplicated compressed images. For example, consider two chains with five pclusters in total: Chain 1: 2->3->4->5 -- The tail pcluster is 5; Chain 2: 5->1->2 -- The tail pcluster is 2. Chain 2 could link to Chain 1 with pcluster 5; and Chain 1 could link to Chain 2 at the same time with pcluster 2. Since hooked chains are all linked locklessly now, I have no idea how to simply avoid the race. Instead, let's avoid hooked chains completely until I could work out a proper way to fix this and end users finally tell us that it's needed to add it back. Actually, this optimization can be found with multi-threaded workloads (especially even more often on deduplicated compressed images), yet I'm not sure about the overall system impacts of not having this compared with implementation complexity.
CVE-2023-53796 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix information leak in f2fs_move_inline_dirents() When converting an inline directory to a regular one, f2fs is leaking uninitialized memory to disk because it doesn't initialize the entire directory block. Fix this by zero-initializing the block. This bug was introduced by commit 4ec17d688d74 ("f2fs: avoid unneeded initializing when converting inline dentry"), which didn't consider the security implications of leaking uninitialized memory to disk. This was found by running xfstest generic/435 on a KMSAN-enabled kernel.
CVE-2022-50658 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom: fix memory leak in error path If for some reason the speedbin length is incorrect, then there is a memory leak in the error path because we never free the speedbin buffer. This commit fixes the error path to always free the speedbin buffer.
CVE-2023-53811 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Cap MSIX used to online CPUs + 1 The irdma driver can use a maximum number of msix vectors equal to num_online_cpus() + 1 and the kernel warning stack below is shown if that number is exceeded. The kernel throws a warning as the driver tries to update the affinity hint with a CPU mask greater than the max CPU IDs. Fix this by capping the MSIX vectors to num_online_cpus() + 1. WARNING: CPU: 7 PID: 23655 at include/linux/cpumask.h:106 irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma] RIP: 0010:irdma_cfg_ceq_vector+0x34c/0x3f0 [irdma] Call Trace: irdma_rt_init_hw+0xa62/0x1290 [irdma] ? irdma_alloc_local_mac_entry+0x1a0/0x1a0 [irdma] ? __is_kernel_percpu_address+0x63/0x310 ? rcu_read_lock_held_common+0xe/0xb0 ? irdma_lan_unregister_qset+0x280/0x280 [irdma] ? irdma_request_reset+0x80/0x80 [irdma] ? ice_get_qos_params+0x84/0x390 [ice] irdma_probe+0xa40/0xfc0 [irdma] ? rcu_read_lock_bh_held+0xd0/0xd0 ? irdma_remove+0x140/0x140 [irdma] ? rcu_read_lock_sched_held+0x62/0xe0 ? down_write+0x187/0x3d0 ? auxiliary_match_id+0xf0/0x1a0 ? irdma_remove+0x140/0x140 [irdma] auxiliary_bus_probe+0xa6/0x100 __driver_probe_device+0x4a4/0xd50 ? __device_attach_driver+0x2c0/0x2c0 driver_probe_device+0x4a/0x110 __driver_attach+0x1aa/0x350 bus_for_each_dev+0x11d/0x1b0 ? subsys_dev_iter_init+0xe0/0xe0 bus_add_driver+0x3b1/0x610 driver_register+0x18e/0x410 ? 0xffffffffc0b88000 irdma_init_module+0x50/0xaa [irdma] do_one_initcall+0x103/0x5f0 ? perf_trace_initcall_level+0x420/0x420 ? do_init_module+0x4e/0x700 ? __kasan_kmalloc+0x7d/0xa0 ? kmem_cache_alloc_trace+0x188/0x2b0 ? kasan_unpoison+0x21/0x50 do_init_module+0x1d1/0x700 load_module+0x3867/0x5260 ? layout_and_allocate+0x3990/0x3990 ? rcu_read_lock_held_common+0xe/0xb0 ? rcu_read_lock_sched_held+0x62/0xe0 ? rcu_read_lock_bh_held+0xd0/0xd0 ? __vmalloc_node_range+0x46b/0x890 ? lock_release+0x5c8/0xba0 ? alloc_vm_area+0x120/0x120 ? selinux_kernel_module_from_file+0x2a5/0x300 ? __inode_security_revalidate+0xf0/0xf0 ? __do_sys_init_module+0x1db/0x260 __do_sys_init_module+0x1db/0x260 ? load_module+0x5260/0x5260 ? do_syscall_64+0x22/0x450 do_syscall_64+0xa5/0x450 entry_SYSCALL_64_after_hwframe+0x66/0xdb
CVE-2022-50679 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix DMA mappings leak During reallocation of RX buffers, new DMA mappings are created for those buffers. steps for reproduction: while : do for ((i=0; i<=8160; i=i+32)) do ethtool -G enp130s0f0 rx $i tx $i sleep 0.5 ethtool -g enp130s0f0 done done This resulted in crash: i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536 Driver BUG WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50 Call Trace: i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b Missing register, driver bug WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140 Call Trace: xdp_rxq_info_unreg+0x1e/0x50 i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b This was caused because of new buffers with different RX ring count should substitute older ones, but those buffers were freed in i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi, thus kfree on rx_bi caused leak of already mapped DMA. Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally reallocate back to rx_bi when BPF program unloads. If BPF program is loaded/unloaded and XSK pools are created, reallocate RX queues accordingly in XSP_SETUP_XSK_POOL handler.
CVE-2022-50633 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: qcom: Fix memory leak in dwc3_qcom_interconnect_init of_icc_get() alloc resources for path handle, we should release it when not need anymore. Like the release in dwc3_qcom_interconnect_exit() function. Add icc_put() in error handling to fix this.
CVE-2022-50632 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: perf: marvell_cn10k: Fix hotplug callback leak in tad_pmu_init() tad_pmu_init() won't remove the callback added by cpuhp_setup_state_multi() when platform_driver_register() failed. Remove the callback by cpuhp_remove_multi_state() in fail path. Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus: arm-ccn: Prevent hotplug callback leak")
CVE-2023-53866 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: soc-compress: Reposition and add pcm_mutex If panic_on_warn is set and compress stream(DPCM) is started, then kernel panic occurred because card->pcm_mutex isn't held appropriately. In the following functions, warning were issued at this line "snd_soc_dpcm_mutex_assert_held". static int dpcm_be_connect(struct snd_soc_pcm_runtime *fe, struct snd_soc_pcm_runtime *be, int stream) { ... snd_soc_dpcm_mutex_assert_held(fe); ... } void dpcm_be_disconnect(struct snd_soc_pcm_runtime *fe, int stream) { ... snd_soc_dpcm_mutex_assert_held(fe); ... } void snd_soc_runtime_action(struct snd_soc_pcm_runtime *rtd, int stream, int action) { ... snd_soc_dpcm_mutex_assert_held(rtd); ... } int dpcm_dapm_stream_event(struct snd_soc_pcm_runtime *fe, int dir, int event) { ... snd_soc_dpcm_mutex_assert_held(fe); ... } These functions are called by soc_compr_set_params_fe, soc_compr_open_fe and soc_compr_free_fe without pcm_mutex locking. And this is call stack. [ 414.527841][ T2179] pc : dpcm_process_paths+0x5a4/0x750 [ 414.527848][ T2179] lr : dpcm_process_paths+0x37c/0x750 [ 414.527945][ T2179] Call trace: [ 414.527949][ T2179] dpcm_process_paths+0x5a4/0x750 [ 414.527955][ T2179] soc_compr_open_fe+0xb0/0x2cc [ 414.527972][ T2179] snd_compr_open+0x180/0x248 [ 414.527981][ T2179] snd_open+0x15c/0x194 [ 414.528003][ T2179] chrdev_open+0x1b0/0x220 [ 414.528023][ T2179] do_dentry_open+0x30c/0x594 [ 414.528045][ T2179] vfs_open+0x34/0x44 [ 414.528053][ T2179] path_openat+0x914/0xb08 [ 414.528062][ T2179] do_filp_open+0xc0/0x170 [ 414.528068][ T2179] do_sys_openat2+0x94/0x18c [ 414.528076][ T2179] __arm64_sys_openat+0x78/0xa4 [ 414.528084][ T2179] invoke_syscall+0x48/0x10c [ 414.528094][ T2179] el0_svc_common+0xbc/0x104 [ 414.528099][ T2179] do_el0_svc+0x34/0xd8 [ 414.528103][ T2179] el0_svc+0x34/0xc4 [ 414.528125][ T2179] el0t_64_sync_handler+0x8c/0xfc [ 414.528133][ T2179] el0t_64_sync+0x1a0/0x1a4 [ 414.528142][ T2179] Kernel panic - not syncing: panic_on_warn set ... So, I reposition and add pcm_mutex to resolve lockdep error.
CVE-2023-53814 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: Fix dropping valid root bus resources with .end = zero On r8a7791/koelsch: kmemleak: 1 new suspected memory leaks (see /sys/kernel/debug/kmemleak) # cat /sys/kernel/debug/kmemleak unreferenced object 0xc3a34e00 (size 64): comm "swapper/0", pid 1, jiffies 4294937460 (age 199.080s) hex dump (first 32 bytes): b4 5d 81 f0 b4 5d 81 f0 c0 b0 a2 c3 00 00 00 00 .]...].......... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<fe3aa979>] __kmalloc+0xf0/0x140 [<34bd6bc0>] resource_list_create_entry+0x18/0x38 [<767046bc>] pci_add_resource_offset+0x20/0x68 [<b3f3edf2>] devm_of_pci_get_host_bridge_resources.constprop.0+0xb0/0x390 When coalescing two resources for a contiguous aperture, the second resource is enlarged to cover the full contiguous range, while the first resource is marked invalid. This invalidation is done by clearing the flags, start, and end members. When adding the initial resources to the bus later, invalid resources are skipped. Unfortunately, the check for an invalid resource considers only the end member, causing false positives. E.g. on r8a7791/koelsch, root bus resource 0 ("bus 00") is skipped, and no longer registered with pci_bus_insert_busn_res() (causing the memory leak), nor printed: pci-rcar-gen2 ee090000.pci: host bridge /soc/pci@ee090000 ranges: pci-rcar-gen2 ee090000.pci: MEM 0x00ee080000..0x00ee08ffff -> 0x00ee080000 pci-rcar-gen2 ee090000.pci: PCI: revision 11 pci-rcar-gen2 ee090000.pci: PCI host bridge to bus 0000:00 -pci_bus 0000:00: root bus resource [bus 00] pci_bus 0000:00: root bus resource [mem 0xee080000-0xee08ffff] Fix this by only skipping resources where all of the flags, start, and end members are zero.