| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix null pointer dereference in resolve_prog_type() for BPF_PROG_TYPE_EXT
When loading a EXT program without specifying `attr->attach_prog_fd`,
the `prog->aux->dst_prog` will be null. At this time, calling
resolve_prog_type() anywhere will result in a null pointer dereference.
Example stack trace:
[ 8.107863] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004
[ 8.108262] Mem abort info:
[ 8.108384] ESR = 0x0000000096000004
[ 8.108547] EC = 0x25: DABT (current EL), IL = 32 bits
[ 8.108722] SET = 0, FnV = 0
[ 8.108827] EA = 0, S1PTW = 0
[ 8.108939] FSC = 0x04: level 0 translation fault
[ 8.109102] Data abort info:
[ 8.109203] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 8.109399] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 8.109614] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 8.109836] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101354000
[ 8.110011] [0000000000000004] pgd=0000000000000000, p4d=0000000000000000
[ 8.112624] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 8.112783] Modules linked in:
[ 8.113120] CPU: 0 PID: 99 Comm: may_access_dire Not tainted 6.10.0-rc3-next-20240613-dirty #1
[ 8.113230] Hardware name: linux,dummy-virt (DT)
[ 8.113390] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 8.113429] pc : may_access_direct_pkt_data+0x24/0xa0
[ 8.113746] lr : add_subprog_and_kfunc+0x634/0x8e8
[ 8.113798] sp : ffff80008283b9f0
[ 8.113813] x29: ffff80008283b9f0 x28: ffff800082795048 x27: 0000000000000001
[ 8.113881] x26: ffff0000c0bb2600 x25: 0000000000000000 x24: 0000000000000000
[ 8.113897] x23: ffff0000c1134000 x22: 000000000001864f x21: ffff0000c1138000
[ 8.113912] x20: 0000000000000001 x19: ffff0000c12b8000 x18: ffffffffffffffff
[ 8.113929] x17: 0000000000000000 x16: 0000000000000000 x15: 0720072007200720
[ 8.113944] x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720
[ 8.113958] x11: 0720072007200720 x10: 0000000000f9fca4 x9 : ffff80008021f4e4
[ 8.113991] x8 : 0101010101010101 x7 : 746f72705f6d656d x6 : 000000001e0e0f5f
[ 8.114006] x5 : 000000000001864f x4 : ffff0000c12b8000 x3 : 000000000000001c
[ 8.114020] x2 : 0000000000000002 x1 : 0000000000000000 x0 : 0000000000000000
[ 8.114126] Call trace:
[ 8.114159] may_access_direct_pkt_data+0x24/0xa0
[ 8.114202] bpf_check+0x3bc/0x28c0
[ 8.114214] bpf_prog_load+0x658/0xa58
[ 8.114227] __sys_bpf+0xc50/0x2250
[ 8.114240] __arm64_sys_bpf+0x28/0x40
[ 8.114254] invoke_syscall.constprop.0+0x54/0xf0
[ 8.114273] do_el0_svc+0x4c/0xd8
[ 8.114289] el0_svc+0x3c/0x140
[ 8.114305] el0t_64_sync_handler+0x134/0x150
[ 8.114331] el0t_64_sync+0x168/0x170
[ 8.114477] Code: 7100707f 54000081 f9401c00 f9403800 (b9400403)
[ 8.118672] ---[ end trace 0000000000000000 ]---
One way to fix it is by forcing `attach_prog_fd` non-empty when
bpf_prog_load(). But this will lead to `libbpf_probe_bpf_prog_type`
API broken which use verifier log to probe prog type and will log
nothing if we reject invalid EXT prog before bpf_check().
Another way is by adding null check in resolve_prog_type().
The issue was introduced by commit 4a9c7bbe2ed4 ("bpf: Resolve to
prog->aux->dst_prog->type only for BPF_PROG_TYPE_EXT") which wanted
to correct type resolution for BPF_PROG_TYPE_TRACING programs. Before
that, the type resolution of BPF_PROG_TYPE_EXT prog actually follows
the logic below:
prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
It implies that when EXT program is not yet attached to `dst_prog`,
the prog type should be EXT itself. This code worked fine in the past.
So just keep using it.
Fix this by returning `prog->type` for BPF_PROG_TYPE_EXT if `dst_prog`
is not present in resolve_prog_type(). |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Fix napi_skb_cache_put warning
After the commit bdacf3e34945 ("net: Use nested-BH locking for
napi_alloc_cache.") was merged, the following warning began to appear:
WARNING: CPU: 5 PID: 1 at net/core/skbuff.c:1451 napi_skb_cache_put+0x82/0x4b0
__warn+0x12f/0x340
napi_skb_cache_put+0x82/0x4b0
napi_skb_cache_put+0x82/0x4b0
report_bug+0x165/0x370
handle_bug+0x3d/0x80
exc_invalid_op+0x1a/0x50
asm_exc_invalid_op+0x1a/0x20
__free_old_xmit+0x1c8/0x510
napi_skb_cache_put+0x82/0x4b0
__free_old_xmit+0x1c8/0x510
__free_old_xmit+0x1c8/0x510
__pfx___free_old_xmit+0x10/0x10
The issue arises because virtio is assuming it's running in NAPI context
even when it's not, such as in the netpoll case.
To resolve this, modify virtnet_poll_tx() to only set NAPI when budget
is available. Same for virtnet_poll_cleantx(), which always assumed that
it was in a NAPI context. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: fix invalid wait context of page_pool_destroy()
If the driver uses a page pool, it creates a page pool with
page_pool_create().
The reference count of page pool is 1 as default.
A page pool will be destroyed only when a reference count reaches 0.
page_pool_destroy() is used to destroy page pool, it decreases a
reference count.
When a page pool is destroyed, ->disconnect() is called, which is
mem_allocator_disconnect().
This function internally acquires mutex_lock().
If the driver uses XDP, it registers a memory model with
xdp_rxq_info_reg_mem_model().
The xdp_rxq_info_reg_mem_model() internally increases a page pool
reference count if a memory model is a page pool.
Now the reference count is 2.
To destroy a page pool, the driver should call both page_pool_destroy()
and xdp_unreg_mem_model().
The xdp_unreg_mem_model() internally calls page_pool_destroy().
Only page_pool_destroy() decreases a reference count.
If a driver calls page_pool_destroy() then xdp_unreg_mem_model(), we
will face an invalid wait context warning.
Because xdp_unreg_mem_model() calls page_pool_destroy() with
rcu_read_lock().
The page_pool_destroy() internally acquires mutex_lock().
Splat looks like:
=============================
[ BUG: Invalid wait context ]
6.10.0-rc6+ #4 Tainted: G W
-----------------------------
ethtool/1806 is trying to lock:
ffffffff90387b90 (mem_id_lock){+.+.}-{4:4}, at: mem_allocator_disconnect+0x73/0x150
other info that might help us debug this:
context-{5:5}
3 locks held by ethtool/1806:
stack backtrace:
CPU: 0 PID: 1806 Comm: ethtool Tainted: G W 6.10.0-rc6+ #4 f916f41f172891c800f2fed
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
Call Trace:
<TASK>
dump_stack_lvl+0x7e/0xc0
__lock_acquire+0x1681/0x4de0
? _printk+0x64/0xe0
? __pfx_mark_lock.part.0+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
lock_acquire+0x1b3/0x580
? mem_allocator_disconnect+0x73/0x150
? __wake_up_klogd.part.0+0x16/0xc0
? __pfx_lock_acquire+0x10/0x10
? dump_stack_lvl+0x91/0xc0
__mutex_lock+0x15c/0x1690
? mem_allocator_disconnect+0x73/0x150
? __pfx_prb_read_valid+0x10/0x10
? mem_allocator_disconnect+0x73/0x150
? __pfx_llist_add_batch+0x10/0x10
? console_unlock+0x193/0x1b0
? lockdep_hardirqs_on+0xbe/0x140
? __pfx___mutex_lock+0x10/0x10
? tick_nohz_tick_stopped+0x16/0x90
? __irq_work_queue_local+0x1e5/0x330
? irq_work_queue+0x39/0x50
? __wake_up_klogd.part.0+0x79/0xc0
? mem_allocator_disconnect+0x73/0x150
mem_allocator_disconnect+0x73/0x150
? __pfx_mem_allocator_disconnect+0x10/0x10
? mark_held_locks+0xa5/0xf0
? rcu_is_watching+0x11/0xb0
page_pool_release+0x36e/0x6d0
page_pool_destroy+0xd7/0x440
xdp_unreg_mem_model+0x1a7/0x2a0
? __pfx_xdp_unreg_mem_model+0x10/0x10
? kfree+0x125/0x370
? bnxt_free_ring.isra.0+0x2eb/0x500
? bnxt_free_mem+0x5ac/0x2500
xdp_rxq_info_unreg+0x4a/0xd0
bnxt_free_mem+0x1356/0x2500
bnxt_close_nic+0xf0/0x3b0
? __pfx_bnxt_close_nic+0x10/0x10
? ethnl_parse_bit+0x2c6/0x6d0
? __pfx___nla_validate_parse+0x10/0x10
? __pfx_ethnl_parse_bit+0x10/0x10
bnxt_set_features+0x2a8/0x3e0
__netdev_update_features+0x4dc/0x1370
? ethnl_parse_bitset+0x4ff/0x750
? __pfx_ethnl_parse_bitset+0x10/0x10
? __pfx___netdev_update_features+0x10/0x10
? mark_held_locks+0xa5/0xf0
? _raw_spin_unlock_irqrestore+0x42/0x70
? __pm_runtime_resume+0x7d/0x110
ethnl_set_features+0x32d/0xa20
To fix this problem, it uses rhashtable_lookup_fast() instead of
rhashtable_lookup() with rcu_read_lock().
Using xa without rcu_read_lock() here is safe.
xa is freed by __xdp_mem_allocator_rcu_free() and this is called by
call_rcu() of mem_xa_remove().
The mem_xa_remove() is called by page_pool_destroy() if a reference
count reaches 0.
The xa is already protected by the reference count mechanism well in the
control plane.
So removing rcu_read_lock() for page_pool_destroy() is safe. |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l: async: Fix NULL pointer dereference in adding ancillary links
In v4l2_async_create_ancillary_links(), ancillary links are created for
lens and flash sub-devices. These are sub-device to sub-device links and
if the async notifier is related to a V4L2 device, the source sub-device
of the ancillary link is NULL, leading to a NULL pointer dereference.
Check the notifier's sd field is non-NULL in
v4l2_async_create_ancillary_links().
[Sakari Ailus: Reword the subject and commit messages slightly.] |
| In the Linux kernel, the following vulnerability has been resolved:
s390/uv: Don't call folio_wait_writeback() without a folio reference
folio_wait_writeback() requires that no spinlocks are held and that
a folio reference is held, as documented. After we dropped the PTL, the
folio could get freed concurrently. So grab a temporary reference. |
| In the Linux kernel, the following vulnerability has been resolved:
leds: trigger: Unregister sysfs attributes before calling deactivate()
Triggers which have trigger specific sysfs attributes typically store
related data in trigger-data allocated by the activate() callback and
freed by the deactivate() callback.
Calling device_remove_groups() after calling deactivate() leaves a window
where the sysfs attributes show/store functions could be called after
deactivation and then operate on the just freed trigger-data.
Move the device_remove_groups() call to before deactivate() to close
this race window.
This also makes the deactivation path properly do things in reverse order
of the activation path which calls the activate() callback before calling
device_add_groups(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/qxl: Add check for drm_cvt_mode
Add check for the return value of drm_cvt_mode() and return the error if
it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix infinite loop when replaying fast_commit
When doing fast_commit replay an infinite loop may occur due to an
uninitialized extent_status struct. ext4_ext_determine_insert_hole() does
not detect the replay and calls ext4_es_find_extent_range(), which will
return immediately without initializing the 'es' variable.
Because 'es' contains garbage, an integer overflow may happen causing an
infinite loop in this function, easily reproducible using fstest generic/039.
This commit fixes this issue by unconditionally initializing the structure
in function ext4_es_find_extent_range().
Thanks to Zhang Yi, for figuring out the real problem! |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: keystone: Fix NULL pointer dereference in case of DT error in ks_pcie_setup_rc_app_regs()
If IORESOURCE_MEM is not provided in Device Tree due to
any error, resource_list_first_type() will return NULL and
pci_parse_request_of_pci_ranges() will just emit a warning.
This will cause a NULL pointer dereference. Fix this bug by adding NULL
return check.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: amd: Adjust error handling in case of absent codec device
acpi_get_first_physical_node() can return NULL in several cases (no such
device, ACPI table error, reference count drop to 0, etc).
Existing check just emit error message, but doesn't perform return.
Then this NULL pointer is passed to devm_acpi_dev_add_driver_gpios()
where it is dereferenced.
Adjust this error handling by adding error code return.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: missing check virtio
Two missing check in virtio_net_hdr_to_skb() allowed syzbot
to crash kernels again
1. After the skb_segment function the buffer may become non-linear
(nr_frags != 0), but since the SKBTX_SHARED_FRAG flag is not set anywhere
the __skb_linearize function will not be executed, then the buffer will
remain non-linear. Then the condition (offset >= skb_headlen(skb))
becomes true, which causes WARN_ON_ONCE in skb_checksum_help.
2. The struct sk_buff and struct virtio_net_hdr members must be
mathematically related.
(gso_size) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) may be 0 if division is without remainder.
offset+2 (4191) > skb_headlen() (1116)
WARNING: CPU: 1 PID: 5084 at net/core/dev.c:3303 skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Modules linked in:
CPU: 1 PID: 5084 Comm: syz-executor336 Not tainted 6.7.0-rc3-syzkaller-00014-gdf60cee26a2e #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
RIP: 0010:skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Code: 89 e8 83 e0 07 83 c0 03 38 d0 7c 08 84 d2 0f 85 52 01 00 00 44 89 e2 2b 53 74 4c 89 ee 48 c7 c7 40 57 e9 8b e8 af 8f dd f8 90 <0f> 0b 90 90 e9 87 fe ff ff e8 40 0f 6e f9 e9 4b fa ff ff 48 89 ef
RSP: 0018:ffffc90003a9f338 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888025125780 RCX: ffffffff814db209
RDX: ffff888015393b80 RSI: ffffffff814db216 RDI: 0000000000000001
RBP: ffff8880251257f4 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 000000000000045c
R13: 000000000000105f R14: ffff8880251257f0 R15: 000000000000105d
FS: 0000555555c24380(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000002000f000 CR3: 0000000023151000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ip_do_fragment+0xa1b/0x18b0 net/ipv4/ip_output.c:777
ip_fragment.constprop.0+0x161/0x230 net/ipv4/ip_output.c:584
ip_finish_output_gso net/ipv4/ip_output.c:286 [inline]
__ip_finish_output net/ipv4/ip_output.c:308 [inline]
__ip_finish_output+0x49c/0x650 net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip_output+0x13b/0x2a0 net/ipv4/ip_output.c:433
dst_output include/net/dst.h:451 [inline]
ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:129
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ipip6_tunnel_xmit net/ipv6/sit.c:1034 [inline]
sit_tunnel_xmit+0xed2/0x28f0 net/ipv6/sit.c:1076
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3545 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3561
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4346
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24ca/0x5240 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0xd5/0x180 net/socket.c:745
__sys_sendto+0x255/0x340 net/socket.c:2190
__do_sys_sendto net/socket.c:2202 [inline]
__se_sys_sendto net/socket.c:2198 [inline]
__x64_sys_sendto+0xe0/0x1b0 net/socket.c:2198
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x40/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Found by Linux Verification Center (linuxtesting.org) with Syzkaller |
| DISPUTE NOTE: this issue does not pose a security risk as it (according to analysis by the original software developer, NLnet Labs) falls within the expected functionality and security controls of the application. Red Hat has made a claim that there is a security risk within Red Hat products. NLnet Labs has no further information about the claim, and suggests that affected Red Hat customers refer to available Red Hat documentation or support channels. ORIGINAL DESCRIPTION: A heap-buffer-overflow flaw was found in the cfg_mark_ports function within Unbound's config_file.c, which can lead to memory corruption. This issue could allow an attacker with local access to provide specially crafted input, potentially causing the application to crash or allowing arbitrary code execution. This could result in a denial of service or unauthorized actions on the system. |
| DISPUTE NOTE: this issue does not pose a security risk as it (according to analysis by the original software developer, NLnet Labs) falls within the expected functionality and security controls of the application. Red Hat has made a claim that there is a security risk within Red Hat products. NLnet Labs has no further information about the claim, and suggests that affected Red Hat customers refer to available Red Hat documentation or support channels. ORIGINAL DESCRIPTION: A NULL pointer dereference flaw was found in the ub_ctx_set_fwd function in Unbound. This issue could allow an attacker who can invoke specific sequences of API calls to cause a segmentation fault. When certain API functions such as ub_ctx_set_fwd and ub_ctx_resolvconf are called in a particular order, the program attempts to read from a NULL pointer, leading to a crash. This issue can result in a denial of service by causing the application to terminate unexpectedly. |
| Asterisk is an open-source private branch exchange (PBX). Prior to versions 18.24.3, 20.9.3, and 21.4.3 of Asterisk and versions 18.9-cert12 and 20.7-cert2 of certified-asterisk, if Asterisk attempts to send a SIP request to a URI whose host portion starts with `.1` or `[.1]`, and res_resolver_unbound is loaded, Asterisk will crash with a SEGV. To receive a patch, users should upgrade to one of the following versions: 18.24.3, 20.9.3, 21.4.3, certified-18.9-cert12, certified-20.7-cert2. Two workarounds are available. Disable res_resolver_unbound by setting `noload = res_resolver_unbound.so` in modules.conf, or set `rewrite_contact = yes` on all PJSIP endpoints. NOTE: This may not be appropriate for all Asterisk configurations. |
| In the Elliptic package 6.5.6 for Node.js, ECDSA signature malleability occurs because BER-encoded signatures are allowed. |
| In the Elliptic package 6.5.6 for Node.js, ECDSA signature malleability occurs because there is a missing check for whether the leading bit of r and s is zero. |
| In the Elliptic package 6.5.6 for Node.js, EDDSA signature malleability occurs because there is a missing signature length check, and thus zero-valued bytes can be removed or appended. |
| An integer overflow vulnerability exists in the Compound Document Binary File format parser of v1.14.52 of the GNOME Project G Structured File Library (libgsf). A specially crafted file can result in an integer overflow that allows for a heap-based buffer overflow when processing the sector allocation table. This can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| Asterisk is an open source private branch exchange (PBX) and telephony toolkit. Prior to asterisk versions 18.24.2, 20.9.2, and 21.4.2 and certified-asterisk versions 18.9-cert11 and 20.7-cert2, an AMI user with `write=originate` may change all configuration files in the `/etc/asterisk/` directory. This occurs because they are able to curl remote files and write them to disk, but are also able to append to existing files using the `FILE` function inside the `SET` application. This issue may result in privilege escalation, remote code execution and/or blind server-side request forgery with arbitrary protocol. Asterisk versions 18.24.2, 20.9.2, and 21.4.2 and certified-asterisk versions 18.9-cert11 and 20.7-cert2 contain a fix for this issue. |
| The researcher is showing that it is possible to leak a small amount of Zabbix Server memory using an out of bounds read in src/libs/zbxmedia/email.c |