CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ARM: davinci: da850-evm: Avoid NULL pointer dereference
With newer versions of GCC, there is a panic in da850_evm_config_emac()
when booting multi_v5_defconfig in QEMU under the palmetto-bmc machine:
Unable to handle kernel NULL pointer dereference at virtual address 00000020
pgd = (ptrval)
[00000020] *pgd=00000000
Internal error: Oops: 5 [#1] PREEMPT ARM
Modules linked in:
CPU: 0 PID: 1 Comm: swapper Not tainted 5.15.0 #1
Hardware name: Generic DT based system
PC is at da850_evm_config_emac+0x1c/0x120
LR is at do_one_initcall+0x50/0x1e0
The emac_pdata pointer in soc_info is NULL because davinci_soc_info only
gets populated on davinci machines but da850_evm_config_emac() is called
on all machines via device_initcall().
Move the rmii_en assignment below the machine check so that it is only
dereferenced when running on a supported SoC. |
In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix missing update of domains_itree after splitting iopt_area
In iopt_area_split(), if the original iopt_area has filled a domain and is
linked to domains_itree, pages_nodes have to be properly
reinserted. Otherwise the domains_itree becomes corrupted and we will UAF. |
In the Linux kernel, the following vulnerability has been resolved:
ARM: dts: bcm2711: Fix xHCI power-domain
During s2idle tests on the Raspberry CM4 the VPU firmware always crashes
on xHCI power-domain resume:
root@raspberrypi:/sys/power# echo freeze > state
[ 70.724347] xhci_suspend finished
[ 70.727730] xhci_plat_suspend finished
[ 70.755624] bcm2835-power bcm2835-power: Power grafx off
[ 70.761127] USB: Set power to 0
[ 74.653040] USB: Failed to set power to 1 (-110)
This seems to be caused because of the mixed usage of
raspberrypi-power and bcm2835-power at the same time. So avoid
the usage of the VPU firmware power-domain driver, which
prevents the VPU crash. |
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: fix uninitialized size issue in radeon_vce_cs_parse()
On the off chance that command stream passed from userspace via
ioctl() call to radeon_vce_cs_parse() is weirdly crafted and
first command to execute is to encode (case 0x03000001), the function
in question will attempt to call radeon_vce_cs_reloc() with size
argument that has not been properly initialized. Specifically, 'size'
will point to 'tmp' variable before the latter had a chance to be
assigned any value.
Play it safe and init 'tmp' with 0, thus ensuring that
radeon_vce_cs_reloc() will catch an early error in cases like these.
Found by Linux Verification Center (linuxtesting.org) with static
analysis tool SVACE.
(cherry picked from commit 2d52de55f9ee7aaee0e09ac443f77855989c6b68) |
In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Fix fence reference count leak
The last_scheduled fence leaks when an entity is being killed and adding
the cleanup callback fails.
Decrement the reference count of prev when dma_fence_add_callback()
fails, ensuring proper balance.
[phasta: add git tag info for stable kernel] |
In the Linux kernel, the following vulnerability has been resolved:
dm-flakey: Fix memory corruption in optional corrupt_bio_byte feature
Fix memory corruption due to incorrect parameter being passed to bio_init |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_rbtree: skip end interval element from gc
rbtree lazy gc on insert might collect an end interval element that has
been just added in this transactions, skip end interval elements that
are not yet active. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate session id and tree id in compound request
`smb2_get_msg()` in smb2_get_ksmbd_tcon() and smb2_check_user_session()
will always return the first request smb2 header in a compound request.
if `SMB2_TREE_CONNECT_HE` is the first command in compound request, will
return 0, i.e. The tree id check is skipped.
This patch use ksmbd_req_buf_next() to get current command in compound. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_rbtree: skip sync GC for new elements in this transaction
New elements in this transaction might expired before such transaction
ends. Skip sync GC for such elements otherwise commit path might walk
over an already released object. Once transaction is finished, async GC
will collect such expired element. |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: interface: fix use-after-free after changing collect_md xfrm interface
collect_md property on xfrm interfaces can only be set on device creation,
thus xfrmi_changelink() should fail when called on such interfaces.
The check to enforce this was done only in the case where the xi was
returned from xfrmi_locate() which doesn't look for the collect_md
interface, and thus the validation was never reached.
Calling changelink would thus errornously place the special interface xi
in the xfrmi_net->xfrmi hash, but since it also exists in the
xfrmi_net->collect_md_xfrmi pointer it would lead to a double free when
the net namespace was taken down [1].
Change the check to use the xi from netdev_priv which is available earlier
in the function to prevent changes in xfrm collect_md interfaces.
[1] resulting oops:
[ 8.516540] kernel BUG at net/core/dev.c:12029!
[ 8.516552] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[ 8.516559] CPU: 0 UID: 0 PID: 12 Comm: kworker/u80:0 Not tainted 6.15.0-virtme #5 PREEMPT(voluntary)
[ 8.516565] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 8.516569] Workqueue: netns cleanup_net
[ 8.516579] RIP: 0010:unregister_netdevice_many_notify+0x101/0xab0
[ 8.516590] Code: 90 0f 0b 90 48 8b b0 78 01 00 00 48 8b 90 80 01 00 00 48 89 56 08 48 89 32 4c 89 80 78 01 00 00 48 89 b8 80 01 00 00 eb ac 90 <0f> 0b 48 8b 45 00 4c 8d a0 88 fe ff ff 48 39 c5 74 5c 41 80 bc 24
[ 8.516593] RSP: 0018:ffffa93b8006bd30 EFLAGS: 00010206
[ 8.516598] RAX: ffff98fe4226e000 RBX: ffffa93b8006bd58 RCX: ffffa93b8006bc60
[ 8.516601] RDX: 0000000000000004 RSI: 0000000000000000 RDI: dead000000000122
[ 8.516603] RBP: ffffa93b8006bdd8 R08: dead000000000100 R09: ffff98fe4133c100
[ 8.516605] R10: 0000000000000000 R11: 00000000000003d2 R12: ffffa93b8006be00
[ 8.516608] R13: ffffffff96c1a510 R14: ffffffff96c1a510 R15: ffffa93b8006be00
[ 8.516615] FS: 0000000000000000(0000) GS:ffff98fee73b7000(0000) knlGS:0000000000000000
[ 8.516619] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8.516622] CR2: 00007fcd2abd0700 CR3: 000000003aa40000 CR4: 0000000000752ef0
[ 8.516625] PKRU: 55555554
[ 8.516627] Call Trace:
[ 8.516632] <TASK>
[ 8.516635] ? rtnl_is_locked+0x15/0x20
[ 8.516641] ? unregister_netdevice_queue+0x29/0xf0
[ 8.516650] ops_undo_list+0x1f2/0x220
[ 8.516659] cleanup_net+0x1ad/0x2e0
[ 8.516664] process_one_work+0x160/0x380
[ 8.516673] worker_thread+0x2aa/0x3c0
[ 8.516679] ? __pfx_worker_thread+0x10/0x10
[ 8.516686] kthread+0xfb/0x200
[ 8.516690] ? __pfx_kthread+0x10/0x10
[ 8.516693] ? __pfx_kthread+0x10/0x10
[ 8.516697] ret_from_fork+0x82/0xf0
[ 8.516705] ? __pfx_kthread+0x10/0x10
[ 8.516709] ret_from_fork_asm+0x1a/0x30
[ 8.516718] </TASK> |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: imx-card: Add NULL check in imx_card_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
imx_card_probe() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix adapter NULL pointer dereference on reboot
With SRIOV enabled, idpf ends up calling into idpf_remove() twice.
First via idpf_shutdown() and then again when idpf_remove() calls into
sriov_disable(), because the VF devices use the idpf driver, hence the
same remove routine. When that happens, it is possible for the adapter
to be NULL from the first call to idpf_remove(), leading to a NULL
pointer dereference.
echo 1 > /sys/class/net/<netif>/device/sriov_numvfs
reboot
BUG: kernel NULL pointer dereference, address: 0000000000000020
...
RIP: 0010:idpf_remove+0x22/0x1f0 [idpf]
...
? idpf_remove+0x22/0x1f0 [idpf]
? idpf_remove+0x1e4/0x1f0 [idpf]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x19f/0x200
pci_stop_bus_device+0x6d/0x90
pci_stop_and_remove_bus_device+0x12/0x20
pci_iov_remove_virtfn+0xbe/0x120
sriov_disable+0x34/0xe0
idpf_sriov_configure+0x58/0x140 [idpf]
idpf_remove+0x1b9/0x1f0 [idpf]
idpf_shutdown+0x12/0x30 [idpf]
pci_device_shutdown+0x35/0x60
device_shutdown+0x156/0x200
...
Replace the direct idpf_remove() call in idpf_shutdown() with
idpf_vc_core_deinit() and idpf_deinit_dflt_mbx(), which perform
the bulk of the cleanup, such as stopping the init task, freeing IRQs,
destroying the vports and freeing the mailbox. This avoids the calls to
sriov_disable() in addition to a small netdev cleanup, and destroying
workqueues, which don't seem to be required on shutdown. |
In the Linux kernel, the following vulnerability has been resolved:
netlabel: Fix NULL pointer exception caused by CALIPSO on IPv4 sockets
When calling netlbl_conn_setattr(), addr->sa_family is used
to determine the function behavior. If sk is an IPv4 socket,
but the connect function is called with an IPv6 address,
the function calipso_sock_setattr() is triggered.
Inside this function, the following code is executed:
sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL;
Since sk is an IPv4 socket, pinet6 is NULL, leading to a
null pointer dereference.
This patch fixes the issue by checking if inet6_sk(sk)
returns a NULL pointer before accessing pinet6. |
In the Linux kernel, the following vulnerability has been resolved:
udp: Fix multiple wraparounds of sk->sk_rmem_alloc.
__udp_enqueue_schedule_skb() has the following condition:
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
goto drop;
sk->sk_rcvbuf is initialised by net.core.rmem_default and later can
be configured by SO_RCVBUF, which is limited by net.core.rmem_max,
or SO_RCVBUFFORCE.
If we set INT_MAX to sk->sk_rcvbuf, the condition is always false
as sk->sk_rmem_alloc is also signed int.
Then, the size of the incoming skb is added to sk->sk_rmem_alloc
unconditionally.
This results in integer overflow (possibly multiple times) on
sk->sk_rmem_alloc and allows a single socket to have skb up to
net.core.udp_mem[1].
For example, if we set a large value to udp_mem[1] and INT_MAX to
sk->sk_rcvbuf and flood packets to the socket, we can see multiple
overflows:
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 7956736 <-- (7956736 << 12) bytes > INT_MAX * 15
^- PAGE_SHIFT
# ss -uam
State Recv-Q ...
UNCONN -1757018048 ... <-- flipping the sign repeatedly
skmem:(r2537949248,rb2147483646,t0,tb212992,f1984,w0,o0,bl0,d0)
Previously, we had a boundary check for INT_MAX, which was removed by
commit 6a1f12dd85a8 ("udp: relax atomic operation on sk->sk_rmem_alloc").
A complete fix would be to revert it and cap the right operand by
INT_MAX:
rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
if (rmem > min(size + (unsigned int)sk->sk_rcvbuf, INT_MAX))
goto uncharge_drop;
but we do not want to add the expensive atomic_add_return() back just
for the corner case.
Casting rmem to unsigned int prevents multiple wraparounds, but we still
allow a single wraparound.
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> 12
# ss -uam
State Recv-Q ...
UNCONN -2147482816 ... <-- INT_MAX + 831 bytes
skmem:(r2147484480,rb2147483646,t0,tb212992,f3264,w0,o0,bl0,d14468947)
So, let's define rmem and rcvbuf as unsigned int and check skb->truesize
only when rcvbuf is large enough to lower the overflow possibility.
Note that we still have a small chance to see overflow if multiple skbs
to the same socket are processed on different core at the same time and
each size does not exceed the limit but the total size does.
Note also that we must ignore skb->truesize for a small buffer as
explained in commit 363dc73acacb ("udp: be less conservative with
sock rmem accounting"). |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_tunnel: fix geneve_opt type confusion addition
When handling multiple NFTA_TUNNEL_KEY_OPTS_GENEVE attributes, the
parsing logic should place every geneve_opt structure one by one
compactly. Hence, when deciding the next geneve_opt position, the
pointer addition should be in units of char *.
However, the current implementation erroneously does type conversion
before the addition, which will lead to heap out-of-bounds write.
[ 6.989857] ==================================================================
[ 6.990293] BUG: KASAN: slab-out-of-bounds in nft_tunnel_obj_init+0x977/0xa70
[ 6.990725] Write of size 124 at addr ffff888005f18974 by task poc/178
[ 6.991162]
[ 6.991259] CPU: 0 PID: 178 Comm: poc-oob-write Not tainted 6.1.132 #1
[ 6.991655] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 6.992281] Call Trace:
[ 6.992423] <TASK>
[ 6.992586] dump_stack_lvl+0x44/0x5c
[ 6.992801] print_report+0x184/0x4be
[ 6.993790] kasan_report+0xc5/0x100
[ 6.994252] kasan_check_range+0xf3/0x1a0
[ 6.994486] memcpy+0x38/0x60
[ 6.994692] nft_tunnel_obj_init+0x977/0xa70
[ 6.995677] nft_obj_init+0x10c/0x1b0
[ 6.995891] nf_tables_newobj+0x585/0x950
[ 6.996922] nfnetlink_rcv_batch+0xdf9/0x1020
[ 6.998997] nfnetlink_rcv+0x1df/0x220
[ 6.999537] netlink_unicast+0x395/0x530
[ 7.000771] netlink_sendmsg+0x3d0/0x6d0
[ 7.001462] __sock_sendmsg+0x99/0xa0
[ 7.001707] ____sys_sendmsg+0x409/0x450
[ 7.002391] ___sys_sendmsg+0xfd/0x170
[ 7.003145] __sys_sendmsg+0xea/0x170
[ 7.004359] do_syscall_64+0x5e/0x90
[ 7.005817] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 7.006127] RIP: 0033:0x7ec756d4e407
[ 7.006339] Code: 48 89 fa 4c 89 df e8 38 aa 00 00 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 1a 5b c3 0f 1f 84 00 00 00 00 00 48 8b 44 24 10 0f 05 <5b> c3 0f 1f 80 00 00 00 00 83 e2 39 83 faf
[ 7.007364] RSP: 002b:00007ffed5d46760 EFLAGS: 00000202 ORIG_RAX: 000000000000002e
[ 7.007827] RAX: ffffffffffffffda RBX: 00007ec756cc4740 RCX: 00007ec756d4e407
[ 7.008223] RDX: 0000000000000000 RSI: 00007ffed5d467f0 RDI: 0000000000000003
[ 7.008620] RBP: 00007ffed5d468a0 R08: 0000000000000000 R09: 0000000000000000
[ 7.009039] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
[ 7.009429] R13: 00007ffed5d478b0 R14: 00007ec756ee5000 R15: 00005cbd4e655cb8
Fix this bug with correct pointer addition and conversion in parse
and dump code. |
In the Linux kernel, the following vulnerability has been resolved:
arcnet: Add NULL check in com20020pci_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
com20020pci_probe() does not check for this case, which results in a
NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue and ensure
no resources are left allocated. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate zero num_subauth before sub_auth is accessed
Access psid->sub_auth[psid->num_subauth - 1] without checking
if num_subauth is non-zero leads to an out-of-bounds read.
This patch adds a validation step to ensure num_subauth != 0
before sub_auth is accessed. |
In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: drop beyond-EOF folios with the right number of refs
When an after-split folio is large and needs to be dropped due to EOF,
folio_put_refs(folio, folio_nr_pages(folio)) should be used to drop all
page cache refs. Otherwise, the folio will not be freed, causing memory
leak.
This leak would happen on a filesystem with blocksize > page_size and a
truncate is performed, where the blocksize makes folios split to >0 order
ones, causing truncated folios not being freed. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: uefisecapp: fix efivars registration race
Since the conversion to using the TZ allocator, the efivars service is
registered before the memory pool has been allocated, something which
can lead to a NULL-pointer dereference in case of a racing EFI variable
access.
Make sure that all resources have been set up before registering the
efivars. |
In the Linux kernel, the following vulnerability has been resolved:
xsk: fix an integer overflow in xp_create_and_assign_umem()
Since the i and pool->chunk_size variables are of type 'u32',
their product can wrap around and then be cast to 'u64'.
This can lead to two different XDP buffers pointing to the same
memory area.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |