Search Results (322814 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38023 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nfs: handle failure of nfs_get_lock_context in unlock path When memory is insufficient, the allocation of nfs_lock_context in nfs_get_lock_context() fails and returns -ENOMEM. If we mistakenly treat an nfs4_unlockdata structure (whose l_ctx member has been set to -ENOMEM) as valid and proceed to execute rpc_run_task(), this will trigger a NULL pointer dereference in nfs4_locku_prepare. For example: BUG: kernel NULL pointer dereference, address: 000000000000000c PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 15 UID: 0 PID: 12 Comm: kworker/u64:0 Not tainted 6.15.0-rc2-dirty #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 Workqueue: rpciod rpc_async_schedule RIP: 0010:nfs4_locku_prepare+0x35/0xc2 Code: 89 f2 48 89 fd 48 c7 c7 68 69 ef b5 53 48 8b 8e 90 00 00 00 48 89 f3 RSP: 0018:ffffbbafc006bdb8 EFLAGS: 00010246 RAX: 000000000000004b RBX: ffff9b964fc1fa00 RCX: 0000000000000000 RDX: 0000000000000000 RSI: fffffffffffffff4 RDI: ffff9ba53fddbf40 RBP: ffff9ba539934000 R08: 0000000000000000 R09: ffffbbafc006bc38 R10: ffffffffb6b689c8 R11: 0000000000000003 R12: ffff9ba539934030 R13: 0000000000000001 R14: 0000000004248060 R15: ffffffffb56d1c30 FS: 0000000000000000(0000) GS:ffff9ba5881f0000(0000) knlGS:00000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000000c CR3: 000000093f244000 CR4: 00000000000006f0 Call Trace: <TASK> __rpc_execute+0xbc/0x480 rpc_async_schedule+0x2f/0x40 process_one_work+0x232/0x5d0 worker_thread+0x1da/0x3d0 ? __pfx_worker_thread+0x10/0x10 kthread+0x10d/0x240 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Modules linked in: CR2: 000000000000000c ---[ end trace 0000000000000000 ]--- Free the allocated nfs4_unlockdata when nfs_get_lock_context() fails and return NULL to terminate subsequent rpc_run_task, preventing NULL pointer dereference.
CVE-2025-38020 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Disable MACsec offload for uplink representor profile MACsec offload is not supported in switchdev mode for uplink representors. When switching to the uplink representor profile, the MACsec offload feature must be cleared from the netdevice's features. If left enabled, attempts to add offloads result in a null pointer dereference, as the uplink representor does not support MACsec offload even though the feature bit remains set. Clear NETIF_F_HW_MACSEC in mlx5e_fix_uplink_rep_features(). Kernel log: Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f] CPU: 29 UID: 0 PID: 4714 Comm: ip Not tainted 6.14.0-rc4_for_upstream_debug_2025_03_02_17_35 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__mutex_lock+0x128/0x1dd0 Code: d0 7c 08 84 d2 0f 85 ad 15 00 00 8b 35 91 5c fe 03 85 f6 75 29 49 8d 7e 60 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 a6 15 00 00 4d 3b 76 60 0f 85 fd 0b 00 00 65 ff RSP: 0018:ffff888147a4f160 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 000000000000000f RSI: 0000000000000000 RDI: 0000000000000078 RBP: ffff888147a4f2e0 R08: ffffffffa05d2c19 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000018 R15: ffff888152de0000 FS: 00007f855e27d800(0000) GS:ffff88881ee80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000004e5768 CR3: 000000013ae7c005 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 Call Trace: <TASK> ? die_addr+0x3d/0xa0 ? exc_general_protection+0x144/0x220 ? asm_exc_general_protection+0x22/0x30 ? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core] ? __mutex_lock+0x128/0x1dd0 ? lockdep_set_lock_cmp_fn+0x190/0x190 ? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core] ? mutex_lock_io_nested+0x1ae0/0x1ae0 ? lock_acquire+0x1c2/0x530 ? macsec_upd_offload+0x145/0x380 ? lockdep_hardirqs_on_prepare+0x400/0x400 ? kasan_save_stack+0x30/0x40 ? kasan_save_stack+0x20/0x40 ? kasan_save_track+0x10/0x30 ? __kasan_kmalloc+0x77/0x90 ? __kmalloc_noprof+0x249/0x6b0 ? genl_family_rcv_msg_attrs_parse.constprop.0+0xb5/0x240 ? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core] mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core] ? mlx5e_macsec_add_rxsa+0x11a0/0x11a0 [mlx5_core] macsec_update_offload+0x26c/0x820 ? macsec_set_mac_address+0x4b0/0x4b0 ? lockdep_hardirqs_on_prepare+0x284/0x400 ? _raw_spin_unlock_irqrestore+0x47/0x50 macsec_upd_offload+0x2c8/0x380 ? macsec_update_offload+0x820/0x820 ? __nla_parse+0x22/0x30 ? genl_family_rcv_msg_attrs_parse.constprop.0+0x15e/0x240 genl_family_rcv_msg_doit+0x1cc/0x2a0 ? genl_family_rcv_msg_attrs_parse.constprop.0+0x240/0x240 ? cap_capable+0xd4/0x330 genl_rcv_msg+0x3ea/0x670 ? genl_family_rcv_msg_dumpit+0x2a0/0x2a0 ? lockdep_set_lock_cmp_fn+0x190/0x190 ? macsec_update_offload+0x820/0x820 netlink_rcv_skb+0x12b/0x390 ? genl_family_rcv_msg_dumpit+0x2a0/0x2a0 ? netlink_ack+0xd80/0xd80 ? rwsem_down_read_slowpath+0xf90/0xf90 ? netlink_deliver_tap+0xcd/0xac0 ? netlink_deliver_tap+0x155/0xac0 ? _copy_from_iter+0x1bb/0x12c0 genl_rcv+0x24/0x40 netlink_unicast+0x440/0x700 ? netlink_attachskb+0x760/0x760 ? lock_acquire+0x1c2/0x530 ? __might_fault+0xbb/0x170 netlink_sendmsg+0x749/0xc10 ? netlink_unicast+0x700/0x700 ? __might_fault+0xbb/0x170 ? netlink_unicast+0x700/0x700 __sock_sendmsg+0xc5/0x190 ____sys_sendmsg+0x53f/0x760 ? import_iovec+0x7/0x10 ? kernel_sendmsg+0x30/0x30 ? __copy_msghdr+0x3c0/0x3c0 ? filter_irq_stacks+0x90/0x90 ? stack_depot_save_flags+0x28/0xa30 ___sys_sen ---truncated---
CVE-2025-38018 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/tls: fix kernel panic when alloc_page failed We cannot set frag_list to NULL pointer when alloc_page failed. It will be used in tls_strp_check_queue_ok when the next time tls_strp_read_sock is called. This is because we don't reset full_len in tls_strp_flush_anchor_copy() so the recv path will try to continue handling the partial record on the next call but we dettached the rcvq from the frag list. Alternative fix would be to reset full_len. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000028 Call trace: tls_strp_check_rcv+0x128/0x27c tls_strp_data_ready+0x34/0x44 tls_data_ready+0x3c/0x1f0 tcp_data_ready+0x9c/0xe4 tcp_data_queue+0xf6c/0x12d0 tcp_rcv_established+0x52c/0x798
CVE-2025-38015 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix memory leak in error handling path of idxd_alloc Memory allocated for idxd is not freed if an error occurs during idxd_alloc(). To fix it, free the allocated memory in the reverse order of allocation before exiting the function in case of an error.
CVE-2025-38009 1 Linux 1 Linux Kernel 2025-11-03 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: disable napi on driver removal A warning on driver removal started occurring after commit 9dd05df8403b ("net: warn if NAPI instance wasn't shut down"). Disable tx napi before deleting it in mt76_dma_cleanup(). WARNING: CPU: 4 PID: 18828 at net/core/dev.c:7288 __netif_napi_del_locked+0xf0/0x100 CPU: 4 UID: 0 PID: 18828 Comm: modprobe Not tainted 6.15.0-rc4 #4 PREEMPT(lazy) Hardware name: ASUS System Product Name/PRIME X670E-PRO WIFI, BIOS 3035 09/05/2024 RIP: 0010:__netif_napi_del_locked+0xf0/0x100 Call Trace: <TASK> mt76_dma_cleanup+0x54/0x2f0 [mt76] mt7921_pci_remove+0xd5/0x190 [mt7921e] pci_device_remove+0x47/0xc0 device_release_driver_internal+0x19e/0x200 driver_detach+0x48/0x90 bus_remove_driver+0x6d/0xf0 pci_unregister_driver+0x2e/0xb0 __do_sys_delete_module.isra.0+0x197/0x2e0 do_syscall_64+0x7b/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e Tested with mt7921e but the same pattern can be actually applied to other mt76 drivers calling mt76_dma_cleanup() during removal. Tx napi is enabled in their *_dma_init() functions and only toggled off and on again inside their suspend/resume/reset paths. So it should be okay to disable tx napi in such a generic way. Found by Linux Verification Center (linuxtesting.org).
CVE-2025-38007 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: uclogic: Add NULL check in uclogic_input_configured() devm_kasprintf() returns NULL when memory allocation fails. Currently, uclogic_input_configured() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue.
CVE-2025-38005 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: k3-udma: Add missing locking Recent kernels complain about a missing lock in k3-udma.c when the lock validator is enabled: [ 4.128073] WARNING: CPU: 0 PID: 746 at drivers/dma/ti/../virt-dma.h:169 udma_start.isra.0+0x34/0x238 [ 4.137352] CPU: 0 UID: 0 PID: 746 Comm: kworker/0:3 Not tainted 6.12.9-arm64 #28 [ 4.144867] Hardware name: pp-v12 (DT) [ 4.148648] Workqueue: events udma_check_tx_completion [ 4.153841] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 4.160834] pc : udma_start.isra.0+0x34/0x238 [ 4.165227] lr : udma_start.isra.0+0x30/0x238 [ 4.169618] sp : ffffffc083cabcf0 [ 4.172963] x29: ffffffc083cabcf0 x28: 0000000000000000 x27: ffffff800001b005 [ 4.180167] x26: ffffffc0812f0000 x25: 0000000000000000 x24: 0000000000000000 [ 4.187370] x23: 0000000000000001 x22: 00000000e21eabe9 x21: ffffff8000fa0670 [ 4.194571] x20: ffffff8001b6bf00 x19: ffffff8000fa0430 x18: ffffffc083b95030 [ 4.201773] x17: 0000000000000000 x16: 00000000f0000000 x15: 0000000000000048 [ 4.208976] x14: 0000000000000048 x13: 0000000000000000 x12: 0000000000000001 [ 4.216179] x11: ffffffc08151a240 x10: 0000000000003ea1 x9 : ffffffc08046ab68 [ 4.223381] x8 : ffffffc083cabac0 x7 : ffffffc081df3718 x6 : 0000000000029fc8 [ 4.230583] x5 : ffffffc0817ee6d8 x4 : 0000000000000bc0 x3 : 0000000000000000 [ 4.237784] x2 : 0000000000000000 x1 : 00000000001fffff x0 : 0000000000000000 [ 4.244986] Call trace: [ 4.247463] udma_start.isra.0+0x34/0x238 [ 4.251509] udma_check_tx_completion+0xd0/0xdc [ 4.256076] process_one_work+0x244/0x3fc [ 4.260129] process_scheduled_works+0x6c/0x74 [ 4.264610] worker_thread+0x150/0x1dc [ 4.268398] kthread+0xd8/0xe8 [ 4.271492] ret_from_fork+0x10/0x20 [ 4.275107] irq event stamp: 220 [ 4.278363] hardirqs last enabled at (219): [<ffffffc080a27c7c>] _raw_spin_unlock_irq+0x38/0x50 [ 4.287183] hardirqs last disabled at (220): [<ffffffc080a1c154>] el1_dbg+0x24/0x50 [ 4.294879] softirqs last enabled at (182): [<ffffffc080037e68>] handle_softirqs+0x1c0/0x3cc [ 4.303437] softirqs last disabled at (177): [<ffffffc080010170>] __do_softirq+0x1c/0x28 [ 4.311559] ---[ end trace 0000000000000000 ]--- This commit adds the missing locking.
CVE-2025-37953 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sch_htb: make htb_deactivate() idempotent Alan reported a NULL pointer dereference in htb_next_rb_node() after we made htb_qlen_notify() idempotent. It turns out in the following case it introduced some regression: htb_dequeue_tree(): |-> fq_codel_dequeue() |-> qdisc_tree_reduce_backlog() |-> htb_qlen_notify() |-> htb_deactivate() |-> htb_next_rb_node() |-> htb_deactivate() For htb_next_rb_node(), after calling the 1st htb_deactivate(), the clprio[prio]->ptr could be already set to NULL, which means htb_next_rb_node() is vulnerable here. For htb_deactivate(), although we checked qlen before calling it, in case of qlen==0 after qdisc_tree_reduce_backlog(), we may call it again which triggers the warning inside. To fix the issues here, we need to: 1) Make htb_deactivate() idempotent, that is, simply return if we already call it before. 2) Make htb_next_rb_node() safe against ptr==NULL. Many thanks to Alan for testing and for the reproducer.
CVE-2025-37951 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Add job to pending list if the reset was skipped When a CL/CSD job times out, we check if the GPU has made any progress since the last timeout. If so, instead of resetting the hardware, we skip the reset and let the timer get rearmed. This gives long-running jobs a chance to complete. However, when `timedout_job()` is called, the job in question is removed from the pending list, which means it won't be automatically freed through `free_job()`. Consequently, when we skip the reset and keep the job running, the job won't be freed when it finally completes. This situation leads to a memory leak, as exposed in [1] and [2]. Similarly to commit 704d3d60fec4 ("drm/etnaviv: don't block scheduler when GPU is still active"), this patch ensures the job is put back on the pending list when extending the timeout.
CVE-2025-37949 1 Linux 1 Linux Kernel 2025-11-03 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: xenbus: Use kref to track req lifetime Marek reported seeing a NULL pointer fault in the xenbus_thread callstack: BUG: kernel NULL pointer dereference, address: 0000000000000000 RIP: e030:__wake_up_common+0x4c/0x180 Call Trace: <TASK> __wake_up_common_lock+0x82/0xd0 process_msg+0x18e/0x2f0 xenbus_thread+0x165/0x1c0 process_msg+0x18e is req->cb(req). req->cb is set to xs_wake_up(), a thin wrapper around wake_up(), or xenbus_dev_queue_reply(). It seems like it was xs_wake_up() in this case. It seems like req may have woken up the xs_wait_for_reply(), which kfree()ed the req. When xenbus_thread resumes, it faults on the zero-ed data. Linux Device Drivers 2nd edition states: "Normally, a wake_up call can cause an immediate reschedule to happen, meaning that other processes might run before wake_up returns." ... which would match the behaviour observed. Change to keeping two krefs on each request. One for the caller, and one for xenbus_thread. Each will kref_put() when finished, and the last will free it. This use of kref matches the description in Documentation/core-api/kref.rst
CVE-2025-37948 1 Linux 1 Linux Kernel 2025-11-03 2.5 Low
In the Linux kernel, the following vulnerability has been resolved: arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs A malicious BPF program may manipulate the branch history to influence what the hardware speculates will happen next. On exit from a BPF program, emit the BHB mititgation sequence. This is only applied for 'classic' cBPF programs that are loaded by seccomp.
CVE-2025-37947 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: prevent out-of-bounds stream writes by validating *pos ksmbd_vfs_stream_write() did not validate whether the write offset (*pos) was within the bounds of the existing stream data length (v_len). If *pos was greater than or equal to v_len, this could lead to an out-of-bounds memory write. This patch adds a check to ensure *pos is less than v_len before proceeding. If the condition fails, -EINVAL is returned.
CVE-2025-37940 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ftrace: Add cond_resched() to ftrace_graph_set_hash() When the kernel contains a large number of functions that can be traced, the loop in ftrace_graph_set_hash() may take a lot of time to execute. This may trigger the softlockup watchdog. Add cond_resched() within the loop to allow the kernel to remain responsive even when processing a large number of functions. This matches the cond_resched() that is used in other locations of the code that iterates over all functions that can be traced.
CVE-2025-37938 1 Linux 1 Linux Kernel 2025-11-03 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Verify event formats that have "%*p.." The trace event verifier checks the formats of trace events to make sure that they do not point at memory that is not in the trace event itself or in data that will never be freed. If an event references data that was allocated when the event triggered and that same data is freed before the event is read, then the kernel can crash by reading freed memory. The verifier runs at boot up (or module load) and scans the print formats of the events and checks their arguments to make sure that dereferenced pointers are safe. If the format uses "%*p.." the verifier will ignore it, and that could be dangerous. Cover this case as well. Also add to the sample code a use case of "%*pbl".
CVE-2025-37937 1 Linux 1 Linux Kernel 2025-11-03 2.5 Low
In the Linux kernel, the following vulnerability has been resolved: objtool, media: dib8000: Prevent divide-by-zero in dib8000_set_dds() If dib8000_set_dds()'s call to dib8000_read32() returns zero, the result is a divide-by-zero. Prevent that from happening. Fixes the following warning with an UBSAN kernel: drivers/media/dvb-frontends/dib8000.o: warning: objtool: dib8000_tune() falls through to next function dib8096p_cfg_DibRx()
CVE-2025-37936 1 Linux 1 Linux Kernel 2025-11-03 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: KVM: Mask PEBS_ENABLE loaded for guest with vCPU's value. When generating the MSR_IA32_PEBS_ENABLE value that will be loaded on VM-Entry to a KVM guest, mask the value with the vCPU's desired PEBS_ENABLE value. Consulting only the host kernel's host vs. guest masks results in running the guest with PEBS enabled even when the guest doesn't want to use PEBS. Because KVM uses perf events to proxy the guest virtual PMU, simply looking at exclude_host can't differentiate between events created by host userspace, and events created by KVM on behalf of the guest. Running the guest with PEBS unexpectedly enabled typically manifests as crashes due to a near-infinite stream of #PFs. E.g. if the guest hasn't written MSR_IA32_DS_AREA, the CPU will hit page faults on address '0' when trying to record PEBS events. The issue is most easily reproduced by running `perf kvm top` from before commit 7b100989b4f6 ("perf evlist: Remove __evlist__add_default") (after which, `perf kvm top` effectively stopped using PEBS). The userspace side of perf creates a guest-only PEBS event, which intel_guest_get_msrs() misconstrues a guest-*owned* PEBS event. Arguably, this is a userspace bug, as enabling PEBS on guest-only events simply cannot work, and userspace can kill VMs in many other ways (there is no danger to the host). However, even if this is considered to be bad userspace behavior, there's zero downside to perf/KVM restricting PEBS to guest-owned events. Note, commit 854250329c02 ("KVM: x86/pmu: Disable guest PEBS temporarily in two rare situations") fixed the case where host userspace is profiling KVM *and* userspace, but missed the case where userspace is profiling only KVM.
CVE-2025-37932 2025-11-03 1.9 Low
In the Linux kernel, the following vulnerability has been resolved: sch_htb: make htb_qlen_notify() idempotent htb_qlen_notify() always deactivates the HTB class and in fact could trigger a warning if it is already deactivated. Therefore, it is not idempotent and not friendly to its callers, like fq_codel_dequeue(). Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers' life.
CVE-2025-37838 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition In the ssi_protocol_probe() function, &ssi->work is bound with ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function within the ssip_pn_ops structure is capable of starting the work. If we remove the module which will call ssi_protocol_remove() to make a cleanup, it will free ssi through kfree(ssi), while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | ssip_xmit_work ssi_protocol_remove | kfree(ssi); | | struct hsi_client *cl = ssi->cl; | // use ssi Fix it by ensuring that the work is canceled before proceeding with the cleanup in ssi_protocol_remove().
CVE-2025-37805 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sound/virtio: Fix cancel_sync warnings on uninitialized work_structs Betty reported hitting the following warning: [ 8.709131][ T221] WARNING: CPU: 2 PID: 221 at kernel/workqueue.c:4182 ... [ 8.713282][ T221] Call trace: [ 8.713365][ T221] __flush_work+0x8d0/0x914 [ 8.713468][ T221] __cancel_work_sync+0xac/0xfc [ 8.713570][ T221] cancel_work_sync+0x24/0x34 [ 8.713667][ T221] virtsnd_remove+0xa8/0xf8 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.713868][ T221] virtsnd_probe+0x48c/0x664 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.714035][ T221] virtio_dev_probe+0x28c/0x390 [ 8.714139][ T221] really_probe+0x1bc/0x4c8 ... It seems we're hitting the error path in virtsnd_probe(), which triggers a virtsnd_remove() which iterates over the substreams calling cancel_work_sync() on the elapsed_period work_struct. Looking at the code, from earlier in: virtsnd_probe()->virtsnd_build_devs()->virtsnd_pcm_parse_cfg() We set snd->nsubstreams, allocate the snd->substreams, and if we then hit an error on the info allocation or something in virtsnd_ctl_query_info() fails, we will exit without having initialized the elapsed_period work_struct. When that error path unwinds we then call virtsnd_remove() which as long as the substreams array is allocated, will iterate through calling cancel_work_sync() on the uninitialized work struct hitting this warning. Takashi Iwai suggested this fix, which initializes the substreams structure right after allocation, so that if we hit the error paths we avoid trying to cleanup uninitialized data. Note: I have not yet managed to reproduce the issue myself, so this patch has had limited testing. Feedback or thoughts would be appreciated!
CVE-2025-37803 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: udmabuf: fix a buf size overflow issue during udmabuf creation by casting size_limit_mb to u64 when calculate pglimit.