| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: Fix pcluster memleak when its block address is zero
syzkaller reported a memleak:
https://syzkaller.appspot.com/bug?id=62f37ff612f0021641eda5b17f056f1668aa9aed
unreferenced object 0xffff88811009c7f8 (size 136):
...
backtrace:
[<ffffffff821db19b>] z_erofs_do_read_page+0x99b/0x1740
[<ffffffff821dee9e>] z_erofs_readahead+0x24e/0x580
[<ffffffff814bc0d6>] read_pages+0x86/0x3d0
...
syzkaller constructed a case: in z_erofs_register_pcluster(),
ztailpacking = false and map->m_pa = zero. This makes pcl->obj.index be
zero although pcl is not a inline pcluster.
Then following path adds refcount for grp, but the refcount won't be put
because pcl is inline.
z_erofs_readahead()
z_erofs_do_read_page() # for another page
z_erofs_collector_begin()
erofs_find_workgroup()
erofs_workgroup_get()
Since it's illegal for the block address of a non-inlined pcluster to
be zero, add check here to avoid registering the pcluster which would
be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix hard lockup when reading the rx_monitor from debugfs
During I/O and simultaneous cat of /sys/kernel/debug/lpfc/fnX/rx_monitor, a
hard lockup similar to the call trace below may occur.
The spin_lock_bh in lpfc_rx_monitor_report is not protecting from timer
interrupts as expected, so change the strength of the spin lock to _irq.
Kernel panic - not syncing: Hard LOCKUP
CPU: 3 PID: 110402 Comm: cat Kdump: loaded
exception RIP: native_queued_spin_lock_slowpath+91
[IRQ stack]
native_queued_spin_lock_slowpath at ffffffffb814e30b
_raw_spin_lock at ffffffffb89a667a
lpfc_rx_monitor_record at ffffffffc0a73a36 [lpfc]
lpfc_cmf_timer at ffffffffc0abbc67 [lpfc]
__hrtimer_run_queues at ffffffffb8184250
hrtimer_interrupt at ffffffffb8184ab0
smp_apic_timer_interrupt at ffffffffb8a026ba
apic_timer_interrupt at ffffffffb8a01c4f
[End of IRQ stack]
apic_timer_interrupt at ffffffffb8a01c4f
lpfc_rx_monitor_report at ffffffffc0a73c80 [lpfc]
lpfc_rx_monitor_read at ffffffffc0addde1 [lpfc]
full_proxy_read at ffffffffb83e7fc3
vfs_read at ffffffffb833fe71
ksys_read at ffffffffb83402af
do_syscall_64 at ffffffffb800430b
entry_SYSCALL_64_after_hwframe at ffffffffb8a000ad |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: Fix OOB Write in hfs_asc2mac
Syzbot reported a OOB Write bug:
loop0: detected capacity change from 0 to 64
==================================================================
BUG: KASAN: slab-out-of-bounds in hfs_asc2mac+0x467/0x9a0
fs/hfs/trans.c:133
Write of size 1 at addr ffff88801848314e by task syz-executor391/3632
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:284
print_report+0x107/0x1f0 mm/kasan/report.c:395
kasan_report+0xcd/0x100 mm/kasan/report.c:495
hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133
hfs_cat_build_key+0x92/0x170 fs/hfs/catalog.c:28
hfs_lookup+0x1ab/0x2c0 fs/hfs/dir.c:31
lookup_open fs/namei.c:3391 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x10e6/0x2df0 fs/namei.c:3710
do_filp_open+0x264/0x4f0 fs/namei.c:3740
If in->len is much larger than HFS_NAMELEN(31) which is the maximum
length of an HFS filename, a OOB write could occur in hfs_asc2mac(). In
that case, when the dst reaches the boundary, the srclen is still
greater than 0, which causes a OOB write.
Fix this by adding a check on dstlen in while() before writing to dst
address. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on summary info
As Wenqing Liu reported in bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=216456
BUG: KASAN: use-after-free in recover_data+0x63ae/0x6ae0 [f2fs]
Read of size 4 at addr ffff8881464dcd80 by task mount/1013
CPU: 3 PID: 1013 Comm: mount Tainted: G W 6.0.0-rc4 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
Call Trace:
dump_stack_lvl+0x45/0x5e
print_report.cold+0xf3/0x68d
kasan_report+0xa8/0x130
recover_data+0x63ae/0x6ae0 [f2fs]
f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs]
f2fs_fill_super+0x4665/0x61e0 [f2fs]
mount_bdev+0x2cf/0x3b0
legacy_get_tree+0xed/0x1d0
vfs_get_tree+0x81/0x2b0
path_mount+0x47e/0x19d0
do_mount+0xce/0xf0
__x64_sys_mount+0x12c/0x1a0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root cause is: in fuzzed image, SSA table is corrupted: ofs_in_node
is larger than ADDRS_PER_PAGE(), result in out-of-range access on 4k-size
page.
- recover_data
- do_recover_data
- check_index_in_prev_nodes
- f2fs_data_blkaddr
This patch adds sanity check on summary info in recovery and GC flow
in where the flows rely on them.
After patch:
[ 29.310883] F2FS-fs (loop0): Inconsistent ofs_in_node:65286 in summary, ino:0, nid:6, max:1018 |
| In the Linux kernel, the following vulnerability has been resolved:
udf: Avoid double brelse() in udf_rename()
syzbot reported a warning like below [1]:
VFS: brelse: Trying to free free buffer
WARNING: CPU: 2 PID: 7301 at fs/buffer.c:1145 __brelse+0x67/0xa0
...
Call Trace:
<TASK>
invalidate_bh_lru+0x99/0x150
smp_call_function_many_cond+0xe2a/0x10c0
? generic_remap_file_range_prep+0x50/0x50
? __brelse+0xa0/0xa0
? __mutex_lock+0x21c/0x12d0
? smp_call_on_cpu+0x250/0x250
? rcu_read_lock_sched_held+0xb/0x60
? lock_release+0x587/0x810
? __brelse+0xa0/0xa0
? generic_remap_file_range_prep+0x50/0x50
on_each_cpu_cond_mask+0x3c/0x80
blkdev_flush_mapping+0x13a/0x2f0
blkdev_put_whole+0xd3/0xf0
blkdev_put+0x222/0x760
deactivate_locked_super+0x96/0x160
deactivate_super+0xda/0x100
cleanup_mnt+0x222/0x3d0
task_work_run+0x149/0x240
? task_work_cancel+0x30/0x30
do_exit+0xb29/0x2a40
? reacquire_held_locks+0x4a0/0x4a0
? do_raw_spin_lock+0x12a/0x2b0
? mm_update_next_owner+0x7c0/0x7c0
? rwlock_bug.part.0+0x90/0x90
? zap_other_threads+0x234/0x2d0
do_group_exit+0xd0/0x2a0
__x64_sys_exit_group+0x3a/0x50
do_syscall_64+0x34/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The cause of the issue is that brelse() is called on both ofibh.sbh
and ofibh.ebh by udf_find_entry() when it returns NULL. However,
brelse() is called by udf_rename(), too. So, b_count on buffer_head
becomes unbalanced.
This patch fixes the issue by not calling brelse() by udf_rename()
when udf_find_entry() returns NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix mempool alloc size
Convert the max size to bytes to match the units of the divisor that
calculates the worst-case number of PRP entries.
The result is used to determine how many PRP Lists are required. The
code was previously rounding this to 1 list, but we can require 2 in the
worst case. In that scenario, the driver would corrupt memory beyond the
size provided by the mempool.
While unlikely to occur (you'd need a 4MB in exactly 127 phys segments
on a queue that doesn't support SGLs), this memory corruption has been
observed by kfence. |
| In the Linux kernel, the following vulnerability has been resolved:
media: camss: Clean up received buffers on failed start of streaming
It is required to return the received buffers, if streaming can not be
started. For instance media_pipeline_start() may fail with EPIPE, if
a link validation between entities is not passed, and in such a case
a user gets a kernel warning:
WARNING: CPU: 1 PID: 520 at drivers/media/common/videobuf2/videobuf2-core.c:1592 vb2_start_streaming+0xec/0x160
<snip>
Call trace:
vb2_start_streaming+0xec/0x160
vb2_core_streamon+0x9c/0x1a0
vb2_ioctl_streamon+0x68/0xbc
v4l_streamon+0x30/0x3c
__video_do_ioctl+0x184/0x3e0
video_usercopy+0x37c/0x7b0
video_ioctl2+0x24/0x40
v4l2_ioctl+0x4c/0x70
The fix is to correct the error path in video_start_streaming() of camss. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Avoid UBSAN error on true_sectors_per_clst()
syzbot reported UBSAN error as below:
[ 76.901829][ T6677] ================================================================================
[ 76.903908][ T6677] UBSAN: shift-out-of-bounds in fs/ntfs3/super.c:675:13
[ 76.905363][ T6677] shift exponent -247 is negative
This patch avoid this error. |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: kexec: Fix memory leak of elf header buffer
This is reported by kmemleak detector:
unreferenced object 0xff2000000403d000 (size 4096):
comm "kexec", pid 146, jiffies 4294900633 (age 64.792s)
hex dump (first 32 bytes):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............
04 00 f3 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000566ca97c>] kmemleak_vmalloc+0x3c/0xbe
[<00000000979283d8>] __vmalloc_node_range+0x3ac/0x560
[<00000000b4b3712a>] __vmalloc_node+0x56/0x62
[<00000000854f75e2>] vzalloc+0x2c/0x34
[<00000000e9a00db9>] crash_prepare_elf64_headers+0x80/0x30c
[<0000000067e8bf48>] elf_kexec_load+0x3e8/0x4ec
[<0000000036548e09>] kexec_image_load_default+0x40/0x4c
[<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322
[<0000000040c62c03>] ret_from_syscall+0x0/0x2
In elf_kexec_load(), a buffer is allocated via vzalloc() to store elf
headers. While it's not freed back to system when kdump kernel is
reloaded or unloaded, or when image->elf_header is successfully set and
then fails to load kdump kernel for some reason. Fix it by freeing the
buffer in arch_kimage_file_post_load_cleanup(). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer
syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for
commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code")
missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must
not be moved to after clean_tree_block() because clean_tree_block() is
calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs:
Fix extent_buffer usage when nodesize != leafsize").
Since memzero_extent_buffer() will reset "struct btrfs_header" part, we
can't move btrfs_set_header_generation() to before memzero_extent_buffer().
Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Correct device removal for multi-actuator devices
Correct device count for multi-actuator drives which can cause kernel
panics. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix memory leak in ocfs2_mount_volume()
There is a memory leak reported by kmemleak:
unreferenced object 0xffff88810cc65e60 (size 32):
comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s)
hex dump (first 32 bytes):
10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................
01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff8170f73d>] __kmalloc+0x4d/0x150
[<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2]
[<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2]
[<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2]
[<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2]
[<ffffffff818e1fe2>] mount_bdev+0x312/0x400
[<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0
[<ffffffff818de82d>] vfs_get_tree+0x7d/0x230
[<ffffffff81957f92>] path_mount+0xd62/0x1760
[<ffffffff81958a5a>] do_mount+0xca/0xe0
[<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0
[<ffffffff82f26f15>] do_syscall_64+0x35/0x80
[<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This call stack is related to two problems. Firstly, the ocfs2 super uses
"replay_map" to trace online/offline slots, in order to recover offline
slots during recovery and mount. But when ocfs2_truncate_log_init()
returns an error in ocfs2_mount_volume(), the memory of "replay_map" will
not be freed in error handling path. Secondly, the memory of "replay_map"
will not be freed if d_make_root() returns an error in ocfs2_fill_super().
But the memory of "replay_map" will be freed normally when completing
recovery and mount in ocfs2_complete_mount_recovery().
Fix the first problem by adding error handling path to free "replay_map"
when ocfs2_truncate_log_init() fails. And fix the second problem by
calling ocfs2_free_replay_slots(osb) in the error handling path
"out_dismount". In addition, since ocfs2_free_replay_slots() is static,
it is necessary to remove its static attribute and declare it in header
file. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: Fix __this_cpu_read() lockdep warning in rcu_force_quiescent_state()
Running rcutorture with non-zero fqs_duration module parameter in a
kernel built with CONFIG_PREEMPTION=y results in the following splat:
BUG: using __this_cpu_read() in preemptible [00000000]
code: rcu_torture_fqs/398
caller is __this_cpu_preempt_check+0x13/0x20
CPU: 3 PID: 398 Comm: rcu_torture_fqs Not tainted 6.0.0-rc1-yoctodev-standard+
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x86
dump_stack+0x10/0x16
check_preemption_disabled+0xe5/0xf0
__this_cpu_preempt_check+0x13/0x20
rcu_force_quiescent_state.part.0+0x1c/0x170
rcu_force_quiescent_state+0x1e/0x30
rcu_torture_fqs+0xca/0x160
? rcu_torture_boost+0x430/0x430
kthread+0x192/0x1d0
? kthread_complete_and_exit+0x30/0x30
ret_from_fork+0x22/0x30
</TASK>
The problem is that rcu_force_quiescent_state() uses __this_cpu_read()
in preemptible code instead of the proper raw_cpu_read(). This commit
therefore changes __this_cpu_read() to raw_cpu_read(). |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix memory leak in nsim_bus_dev_new()
If device_register() failed in nsim_bus_dev_new(), the value of reference
in nsim_bus_dev->dev is 1. obj->name in nsim_bus_dev->dev will not be
released.
unreferenced object 0xffff88810352c480 (size 16):
comm "echo", pid 5691, jiffies 4294945921 (age 133.270s)
hex dump (first 16 bytes):
6e 65 74 64 65 76 73 69 6d 31 00 00 00 00 00 00 netdevsim1......
backtrace:
[<000000005e2e5e26>] __kmalloc_node_track_caller+0x3a/0xb0
[<0000000094ca4fc8>] kvasprintf+0xc3/0x160
[<00000000aad09bcc>] kvasprintf_const+0x55/0x180
[<000000009bac868d>] kobject_set_name_vargs+0x56/0x150
[<000000007c1a5d70>] dev_set_name+0xbb/0xf0
[<00000000ad0d126b>] device_add+0x1f8/0x1cb0
[<00000000c222ae24>] new_device_store+0x3b6/0x5e0
[<0000000043593421>] bus_attr_store+0x72/0xa0
[<00000000cbb1833a>] sysfs_kf_write+0x106/0x160
[<00000000d0dedb8a>] kernfs_fop_write_iter+0x3a8/0x5a0
[<00000000770b66e2>] vfs_write+0x8f0/0xc80
[<0000000078bb39be>] ksys_write+0x106/0x210
[<00000000005e55a4>] do_syscall_64+0x35/0x80
[<00000000eaa40bbc>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe
of_phy_find_device() return device node with refcount incremented.
Call put_device() to relese it when not needed anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: Fix kmemleak in orangefs_prepare_debugfs_help_string()
When insert and remove the orangefs module, then debug_help_string will
be leaked:
unreferenced object 0xffff8881652ba000 (size 4096):
comm "insmod", pid 1701, jiffies 4294893639 (age 13218.530s)
hex dump (first 32 bytes):
43 6c 69 65 6e 74 20 44 65 62 75 67 20 4b 65 79 Client Debug Key
77 6f 72 64 73 20 61 72 65 20 75 6e 6b 6e 6f 77 words are unknow
backtrace:
[<0000000004e6f8e3>] kmalloc_trace+0x27/0xa0
[<0000000006f75d85>] orangefs_prepare_debugfs_help_string+0x5e/0x480 [orangefs]
[<0000000091270a2a>] _sub_I_65535_1+0x57/0xf70 [crc_itu_t]
[<000000004b1ee1a3>] do_one_initcall+0x87/0x2a0
[<000000001d0614ae>] do_init_module+0xdf/0x320
[<00000000efef068c>] load_module+0x2f98/0x3330
[<000000006533b44d>] __do_sys_finit_module+0x113/0x1b0
[<00000000a0da6f99>] do_syscall_64+0x35/0x80
[<000000007790b19b>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
When remove the module, should always free debug_help_string. Should
always free the allocated buffer when change the free_debug_help_string. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix UAF issue in nfqnl_nf_hook_drop() when ops_init() failed
When the ops_init() interface is invoked to initialize the net, but
ops->init() fails, data is released. However, the ptr pointer in
net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked
to release the net, invalid address access occurs.
The process is as follows:
setup_net()
ops_init()
data = kzalloc(...) ---> alloc "data"
net_assign_generic() ---> assign "date" to ptr in net->gen
...
ops->init() ---> failed
...
kfree(data); ---> ptr in net->gen is invalid
...
ops_exit_list()
...
nfqnl_nf_hook_drop()
*q = nfnl_queue_pernet(net) ---> q is invalid
The following is the Call Trace information:
BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280
Read of size 8 at addr ffff88810396b240 by task ip/15855
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
print_report+0x155/0x454
kasan_report+0xba/0x1f0
nfqnl_nf_hook_drop+0x264/0x280
nf_queue_nf_hook_drop+0x8b/0x1b0
__nf_unregister_net_hook+0x1ae/0x5a0
nf_unregister_net_hooks+0xde/0x130
ops_exit_list+0xb0/0x170
setup_net+0x7ac/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Allocated by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0xa1/0xb0
__kmalloc+0x49/0xb0
ops_init+0xe7/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x155/0x1b0
slab_free_freelist_hook+0x11b/0x220
__kmem_cache_free+0xa4/0x360
ops_init+0xb9/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
amdgpu/pm: prevent array underflow in vega20_odn_edit_dpm_table()
In the PP_OD_EDIT_VDDC_CURVE case the "input_index" variable is capped at
2 but not checked for negative values so it results in an out of bounds
read. This value comes from the user via sysfs. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Initialize allocated memory before use
KMSAN reports: Multiple uninitialized values detected:
- KMSAN: uninit-value in ntfs_read_hdr (3)
- KMSAN: uninit-value in bcmp (3)
Memory is allocated by __getname(), which is a wrapper for
kmem_cache_alloc(). This memory is used before being properly
cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to
properly allocate and clear memory before use. |
| In the Linux kernel, the following vulnerability has been resolved:
md: init bioset in mddev_init
IO operations may be needed before md_run(), such as updating metadata
after writing sysfs. Without bioset, this triggers a NULL pointer
dereference as below:
BUG: kernel NULL pointer dereference, address: 0000000000000020
Call Trace:
md_update_sb+0x658/0xe00
new_level_store+0xc5/0x120
md_attr_store+0xc9/0x1e0
sysfs_kf_write+0x6f/0xa0
kernfs_fop_write_iter+0x141/0x2a0
vfs_write+0x1fc/0x5a0
ksys_write+0x79/0x180
__x64_sys_write+0x1d/0x30
x64_sys_call+0x2818/0x2880
do_syscall_64+0xa9/0x580
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Reproducer
```
mdadm -CR /dev/md0 -l1 -n2 /dev/sd[cd]
echo inactive > /sys/block/md0/md/array_state
echo 10 > /sys/block/md0/md/new_level
```
mddev_init() can only be called once per mddev, no need to test if bioset
has been initialized anymore. |