CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in resource_build_scaling_params
Null pointer dereference issue could occur when pipe_ctx->plane_state
is null. The fix adds a check to ensure 'pipe_ctx->plane_state' is not
null before accessing. This prevents a null pointer dereference.
Found by code review.
(cherry picked from commit 63e6a77ccf239337baa9b1e7787cde9fa0462092) |
In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix a deadlock when recovering state on a sillyrenamed file
If the file is sillyrenamed, and slated for delete on close, it is
possible for a server reboot to triggeer an open reclaim, with can again
race with the application call to close(). When that happens, the call
to put_nfs_open_context() can trigger a synchronous delegreturn call
which deadlocks because it is not marked as privileged.
Instead, ensure that the call to nfs4_inode_return_delegation_on_close()
catches the delegreturn, and schedules it asynchronously. |
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Avoid potential division by zero in function_stat_show()
Check whether denominator expression x * (x - 1) * 1000 mod {2^32, 2^64}
produce zero and skip stddev computation in that case.
For now don't care about rec->counter * rec->counter overflow because
rec->time * rec->time overflow will likely happen earlier. |
In the Linux kernel, the following vulnerability has been resolved:
arm64: entry: fix ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
Currently the ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround isn't
quite right, as it is supposed to be applied after the last explicit
memory access, but is immediately followed by an LDR.
The ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround is used to
handle Cortex-A520 erratum 2966298 and Cortex-A510 erratum 3117295,
which are described in:
* https://developer.arm.com/documentation/SDEN2444153/0600/?lang=en
* https://developer.arm.com/documentation/SDEN1873361/1600/?lang=en
In both cases the workaround is described as:
| If pagetable isolation is disabled, the context switch logic in the
| kernel can be updated to execute the following sequence on affected
| cores before exiting to EL0, and after all explicit memory accesses:
|
| 1. A non-shareable TLBI to any context and/or address, including
| unused contexts or addresses, such as a `TLBI VALE1 Xzr`.
|
| 2. A DSB NSH to guarantee completion of the TLBI.
The important part being that the TLBI+DSB must be placed "after all
explicit memory accesses".
Unfortunately, as-implemented, the TLBI+DSB is immediately followed by
an LDR, as we have:
| alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
| tlbi vale1, xzr
| dsb nsh
| alternative_else_nop_endif
| alternative_if_not ARM64_UNMAP_KERNEL_AT_EL0
| ldr lr, [sp, #S_LR]
| add sp, sp, #PT_REGS_SIZE // restore sp
| eret
| alternative_else_nop_endif
|
| [ ... KPTI exception return path ... ]
This patch fixes this by reworking the logic to place the TLBI+DSB
immediately before the ERET, after all explicit memory accesses.
The ERET is currently in a separate alternative block, and alternatives
cannot be nested. To account for this, the alternative block for
ARM64_UNMAP_KERNEL_AT_EL0 is replaced with a single alternative branch
to skip the KPTI logic, with the new shape of the logic being:
| alternative_insn "b .L_skip_tramp_exit_\@", nop, ARM64_UNMAP_KERNEL_AT_EL0
| [ ... KPTI exception return path ... ]
| .L_skip_tramp_exit_\@:
|
| ldr lr, [sp, #S_LR]
| add sp, sp, #PT_REGS_SIZE // restore sp
|
| alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
| tlbi vale1, xzr
| dsb nsh
| alternative_else_nop_endif
| eret
The new structure means that the workaround is only applied when KPTI is
not in use; this is fine as noted in the documented implications of the
erratum:
| Pagetable isolation between EL0 and higher level ELs prevents the
| issue from occurring.
... and as per the workaround description quoted above, the workaround
is only necessary "If pagetable isolation is disabled". |
In the Linux kernel, the following vulnerability has been resolved:
Revert "wifi: mac80211: fix memory leak in ieee80211_if_add()"
This reverts commit 13e5afd3d773c6fc6ca2b89027befaaaa1ea7293.
ieee80211_if_free() is already called from free_netdev(ndev)
because ndev->priv_destructor == ieee80211_if_free
syzbot reported:
general protection fault, probably for non-canonical address 0xdffffc0000000004: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000020-0x0000000000000027]
CPU: 0 PID: 10041 Comm: syz-executor.0 Not tainted 6.2.0-rc2-syzkaller-00388-g55b98837e37d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
RIP: 0010:pcpu_get_page_chunk mm/percpu.c:262 [inline]
RIP: 0010:pcpu_chunk_addr_search mm/percpu.c:1619 [inline]
RIP: 0010:free_percpu mm/percpu.c:2271 [inline]
RIP: 0010:free_percpu+0x186/0x10f0 mm/percpu.c:2254
Code: 80 3c 02 00 0f 85 f5 0e 00 00 48 8b 3b 48 01 ef e8 cf b3 0b 00 48 ba 00 00 00 00 00 fc ff df 48 8d 78 20 48 89 f9 48 c1 e9 03 <80> 3c 11 00 0f 85 3b 0e 00 00 48 8b 58 20 48 b8 00 00 00 00 00 fc
RSP: 0018:ffffc90004ba7068 EFLAGS: 00010002
RAX: 0000000000000000 RBX: ffff88823ffe2b80 RCX: 0000000000000004
RDX: dffffc0000000000 RSI: ffffffff81c1f4e7 RDI: 0000000000000020
RBP: ffffe8fffe8fc220 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000000 R11: 1ffffffff2179ab2 R12: ffff8880b983d000
R13: 0000000000000003 R14: 0000607f450fc220 R15: ffff88823ffe2988
FS: 00007fcb349de700(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b32220000 CR3: 000000004914f000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
netdev_run_todo+0x6bf/0x1100 net/core/dev.c:10352
ieee80211_register_hw+0x2663/0x4040 net/mac80211/main.c:1411
mac80211_hwsim_new_radio+0x2537/0x4d80 drivers/net/wireless/mac80211_hwsim.c:4583
hwsim_new_radio_nl+0xa09/0x10f0 drivers/net/wireless/mac80211_hwsim.c:5176
genl_family_rcv_msg_doit.isra.0+0x1e6/0x2d0 net/netlink/genetlink.c:968
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x4ff/0x7e0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x165/0x440 net/netlink/af_netlink.c:2564
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1330 [inline]
netlink_unicast+0x547/0x7f0 net/netlink/af_netlink.c:1356
netlink_sendmsg+0x91b/0xe10 net/netlink/af_netlink.c:1932
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg+0xd3/0x120 net/socket.c:734
____sys_sendmsg+0x712/0x8c0 net/socket.c:2476
___sys_sendmsg+0x110/0x1b0 net/socket.c:2530
__sys_sendmsg+0xf7/0x1c0 net/socket.c:2559
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix ib block iterator counter overflow
When registering a new DMA MR after selecting the best aligned page size
for it, we iterate over the given sglist to split each entry to smaller,
aligned to the selected page size, DMA blocks.
In given circumstances where the sg entry and page size fit certain
sizes and the sg entry is not aligned to the selected page size, the
total size of the aligned pages we need to cover the sg entry is >= 4GB.
Under this circumstances, while iterating page aligned blocks, the
counter responsible for counting how much we advanced from the start of
the sg entry is overflowed because its type is u32 and we pass 4GB in
size. This can lead to an infinite loop inside the iterator function
because the overflow prevents the counter to be larger
than the size of the sg entry.
Fix the presented problem by changing the advancement condition to
eliminate overflow.
Backtrace:
[ 192.374329] efa_reg_user_mr_dmabuf
[ 192.376783] efa_register_mr
[ 192.382579] pgsz_bitmap 0xfffff000 rounddown 0x80000000
[ 192.386423] pg_sz [0x80000000] umem_length[0xc0000000]
[ 192.392657] start 0x0 length 0xc0000000 params.page_shift 31 params.page_num 3
[ 192.399559] hp_cnt[3], pages_in_hp[524288]
[ 192.403690] umem->sgt_append.sgt.nents[1]
[ 192.407905] number entries: [1], pg_bit: [31]
[ 192.411397] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8]
[ 192.415601] biter->__sg_advance [665837568] sg_dma_len[3221225472]
[ 192.419823] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8]
[ 192.423976] biter->__sg_advance [2813321216] sg_dma_len[3221225472]
[ 192.428243] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8]
[ 192.432397] biter->__sg_advance [665837568] sg_dma_len[3221225472] |
In the Linux kernel, the following vulnerability has been resolved:
net: enetc: avoid deadlock in enetc_tx_onestep_tstamp()
This lockdep splat says it better than I could:
================================
WARNING: inconsistent lock state
6.2.0-rc2-07010-ga9b9500ffaac-dirty #967 Not tainted
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kworker/1:3/179 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffff3ec4036ce098 (_xmit_ETHER#2){+.?.}-{3:3}, at: netif_freeze_queues+0x5c/0xc0
{IN-SOFTIRQ-W} state was registered at:
_raw_spin_lock+0x5c/0xc0
sch_direct_xmit+0x148/0x37c
__dev_queue_xmit+0x528/0x111c
ip6_finish_output2+0x5ec/0xb7c
ip6_finish_output+0x240/0x3f0
ip6_output+0x78/0x360
ndisc_send_skb+0x33c/0x85c
ndisc_send_rs+0x54/0x12c
addrconf_rs_timer+0x154/0x260
call_timer_fn+0xb8/0x3a0
__run_timers.part.0+0x214/0x26c
run_timer_softirq+0x3c/0x74
__do_softirq+0x14c/0x5d8
____do_softirq+0x10/0x20
call_on_irq_stack+0x2c/0x5c
do_softirq_own_stack+0x1c/0x30
__irq_exit_rcu+0x168/0x1a0
irq_exit_rcu+0x10/0x40
el1_interrupt+0x38/0x64
irq event stamp: 7825
hardirqs last enabled at (7825): [<ffffdf1f7200cae4>] exit_to_kernel_mode+0x34/0x130
hardirqs last disabled at (7823): [<ffffdf1f708105f0>] __do_softirq+0x550/0x5d8
softirqs last enabled at (7824): [<ffffdf1f7081050c>] __do_softirq+0x46c/0x5d8
softirqs last disabled at (7811): [<ffffdf1f708166e0>] ____do_softirq+0x10/0x20
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(_xmit_ETHER#2);
<Interrupt>
lock(_xmit_ETHER#2);
*** DEADLOCK ***
3 locks held by kworker/1:3/179:
#0: ffff3ec400004748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0
#1: ffff80000a0bbdc8 ((work_completion)(&priv->tx_onestep_tstamp)){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0
#2: ffff3ec4036cd438 (&dev->tx_global_lock){+.+.}-{3:3}, at: netif_tx_lock+0x1c/0x34
Workqueue: events enetc_tx_onestep_tstamp
Call trace:
print_usage_bug.part.0+0x208/0x22c
mark_lock+0x7f0/0x8b0
__lock_acquire+0x7c4/0x1ce0
lock_acquire.part.0+0xe0/0x220
lock_acquire+0x68/0x84
_raw_spin_lock+0x5c/0xc0
netif_freeze_queues+0x5c/0xc0
netif_tx_lock+0x24/0x34
enetc_tx_onestep_tstamp+0x20/0x100
process_one_work+0x28c/0x6c0
worker_thread+0x74/0x450
kthread+0x118/0x11c
but I'll say it anyway: the enetc_tx_onestep_tstamp() work item runs in
process context, therefore with softirqs enabled (i.o.w., it can be
interrupted by a softirq). If we hold the netif_tx_lock() when there is
an interrupt, and the NET_TX softirq then gets scheduled, this will take
the netif_tx_lock() a second time and deadlock the kernel.
To solve this, use netif_tx_lock_bh(), which blocks softirqs from
running. |
In the Linux kernel, the following vulnerability has been resolved:
l2tp: close all race conditions in l2tp_tunnel_register()
The code in l2tp_tunnel_register() is racy in several ways:
1. It modifies the tunnel socket _after_ publishing it.
2. It calls setup_udp_tunnel_sock() on an existing socket without
locking.
3. It changes sock lock class on fly, which triggers many syzbot
reports.
This patch amends all of them by moving socket initialization code
before publishing and under sock lock. As suggested by Jakub, the
l2tp lockdep class is not necessary as we can just switch to
bh_lock_sock_nested(). |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Fix memory leaks
When hci_cmd_sync_queue() failed in hci_le_terminate_big() or
hci_le_big_terminate(), the memory pointed by variable d is not freed,
which will cause memory leak. Add release process to error path. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: fix memory leak in hci_update_adv_data()
When hci_cmd_sync_queue() failed in hci_update_adv_data(), inst_ptr is
not freed, which will cause memory leak, convert to use ERR_PTR/PTR_ERR
to pass the instance to callback so no memory needs to be allocated. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix possible deadlock in rfcomm_sk_state_change
syzbot reports a possible deadlock in rfcomm_sk_state_change [1].
While rfcomm_sock_connect acquires the sk lock and waits for
the rfcomm lock, rfcomm_sock_release could have the rfcomm
lock and hit a deadlock for acquiring the sk lock.
Here's a simplified flow:
rfcomm_sock_connect:
lock_sock(sk)
rfcomm_dlc_open:
rfcomm_lock()
rfcomm_sock_release:
rfcomm_sock_shutdown:
rfcomm_lock()
__rfcomm_dlc_close:
rfcomm_k_state_change:
lock_sock(sk)
This patch drops the sk lock before calling rfcomm_dlc_open to
avoid the possible deadlock and holds sk's reference count to
prevent use-after-free after rfcomm_dlc_open completes. |
In the Linux kernel, the following vulnerability has been resolved:
HID: betop: check shape of output reports
betopff_init() only checks the total sum of the report counts for each
report field to be at least 4, but hid_betopff_play() expects 4 report
fields.
A device advertising an output report with one field and 4 report counts
would pass the check but crash the kernel with a NULL pointer dereference
in hid_betopff_play(). |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/via: Avoid potential array out-of-bound in add_secret_dac_path()
snd_hda_get_connections() can return a negative error code.
It may lead to accessing 'conn' array at a negative index.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
net: phy: dp83822: Fix null pointer access on DP83825/DP83826 devices
The probe() function is only used for the DP83822 PHY, leaving the
private data pointer uninitialized for the smaller DP83825/26 models.
While all uses of the private data structure are hidden in 82822 specific
callbacks, configuring the interrupt is shared across all models.
This causes a NULL pointer dereference on the smaller PHYs as it accesses
the private data unchecked. Verifying the pointer avoids that. |
In the Linux kernel, the following vulnerability has been resolved:
riscv: kprobe: Fixup kernel panic when probing an illegal position
The kernel would panic when probed for an illegal position. eg:
(CONFIG_RISCV_ISA_C=n)
echo 'p:hello kernel_clone+0x16 a0=%a0' >> kprobe_events
echo 1 > events/kprobes/hello/enable
cat trace
Kernel panic - not syncing: stack-protector: Kernel stack
is corrupted in: __do_sys_newfstatat+0xb8/0xb8
CPU: 0 PID: 111 Comm: sh Not tainted
6.2.0-rc1-00027-g2d398fe49a4d #490
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
[<ffffffff80007268>] dump_backtrace+0x38/0x48
[<ffffffff80c5e83c>] show_stack+0x50/0x68
[<ffffffff80c6da28>] dump_stack_lvl+0x60/0x84
[<ffffffff80c6da6c>] dump_stack+0x20/0x30
[<ffffffff80c5ecf4>] panic+0x160/0x374
[<ffffffff80c6db94>] generic_handle_arch_irq+0x0/0xa8
[<ffffffff802deeb0>] sys_newstat+0x0/0x30
[<ffffffff800158c0>] sys_clone+0x20/0x30
[<ffffffff800039e8>] ret_from_syscall+0x0/0x4
---[ end Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: __do_sys_newfstatat+0xb8/0xb8 ]---
That is because the kprobe's ebreak instruction broke the kernel's
original code. The user should guarantee the correction of the probe
position, but it couldn't make the kernel panic.
This patch adds arch_check_kprobe in arch_prepare_kprobe to prevent an
illegal position (Such as the middle of an instruction). |
In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix flow memory leak in ovs_flow_cmd_new
Syzkaller reports a memory leak of new_flow in ovs_flow_cmd_new() as it is
not freed when an allocation of a key fails.
BUG: memory leak
unreferenced object 0xffff888116668000 (size 632):
comm "syz-executor231", pid 1090, jiffies 4294844701 (age 18.871s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000defa3494>] kmem_cache_zalloc include/linux/slab.h:654 [inline]
[<00000000defa3494>] ovs_flow_alloc+0x19/0x180 net/openvswitch/flow_table.c:77
[<00000000c67d8873>] ovs_flow_cmd_new+0x1de/0xd40 net/openvswitch/datapath.c:957
[<0000000010a539a8>] genl_family_rcv_msg_doit+0x22d/0x330 net/netlink/genetlink.c:739
[<00000000dff3302d>] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline]
[<00000000dff3302d>] genl_rcv_msg+0x328/0x590 net/netlink/genetlink.c:800
[<000000000286dd87>] netlink_rcv_skb+0x153/0x430 net/netlink/af_netlink.c:2515
[<0000000061fed410>] genl_rcv+0x24/0x40 net/netlink/genetlink.c:811
[<000000009dc0f111>] netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
[<000000009dc0f111>] netlink_unicast+0x545/0x7f0 net/netlink/af_netlink.c:1339
[<000000004a5ee816>] netlink_sendmsg+0x8e7/0xde0 net/netlink/af_netlink.c:1934
[<00000000482b476f>] sock_sendmsg_nosec net/socket.c:651 [inline]
[<00000000482b476f>] sock_sendmsg+0x152/0x190 net/socket.c:671
[<00000000698574ba>] ____sys_sendmsg+0x70a/0x870 net/socket.c:2356
[<00000000d28d9e11>] ___sys_sendmsg+0xf3/0x170 net/socket.c:2410
[<0000000083ba9120>] __sys_sendmsg+0xe5/0x1b0 net/socket.c:2439
[<00000000c00628f8>] do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46
[<000000004abfdcf4>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
To fix this the patch rearranges the goto labels to reflect the order of
object allocations and adds appropriate goto statements on the error
paths.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
efi: fix potential NULL deref in efi_mem_reserve_persistent
When iterating on a linked list, a result of memremap is dereferenced
without checking it for NULL.
This patch adds a check that falls back on allocating a new page in
case memremap doesn't succeed.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[ardb: return -ENOMEM instead of breaking out of the loop] |
In the Linux kernel, the following vulnerability has been resolved:
mm: memcg: fix NULL pointer in mem_cgroup_track_foreign_dirty_slowpath()
As commit 18365225f044 ("hwpoison, memcg: forcibly uncharge LRU pages"),
hwpoison will forcibly uncharg a LRU hwpoisoned page, the folio_memcg
could be NULl, then, mem_cgroup_track_foreign_dirty_slowpath() could
occurs a NULL pointer dereference, let's do not record the foreign
writebacks for folio memcg is null in mem_cgroup_track_foreign_dirty() to
fix it. |
In the Linux kernel, the following vulnerability has been resolved:
VMCI: Use threaded irqs instead of tasklets
The vmci_dispatch_dgs() tasklet function calls vmci_read_data()
which uses wait_event() resulting in invalid sleep in an atomic
context (and therefore potentially in a deadlock).
Use threaded irqs to fix this issue and completely remove usage
of tasklets.
[ 20.264639] BUG: sleeping function called from invalid context at drivers/misc/vmw_vmci/vmci_guest.c:145
[ 20.264643] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 762, name: vmtoolsd
[ 20.264645] preempt_count: 101, expected: 0
[ 20.264646] RCU nest depth: 0, expected: 0
[ 20.264647] 1 lock held by vmtoolsd/762:
[ 20.264648] #0: ffff0000874ae440 (sk_lock-AF_VSOCK){+.+.}-{0:0}, at: vsock_connect+0x60/0x330 [vsock]
[ 20.264658] Preemption disabled at:
[ 20.264659] [<ffff80000151d7d8>] vmci_send_datagram+0x44/0xa0 [vmw_vmci]
[ 20.264665] CPU: 0 PID: 762 Comm: vmtoolsd Not tainted 5.19.0-0.rc8.20220727git39c3c396f813.60.fc37.aarch64 #1
[ 20.264667] Hardware name: VMware, Inc. VBSA/VBSA, BIOS VEFI 12/31/2020
[ 20.264668] Call trace:
[ 20.264669] dump_backtrace+0xc4/0x130
[ 20.264672] show_stack+0x24/0x80
[ 20.264673] dump_stack_lvl+0x88/0xb4
[ 20.264676] dump_stack+0x18/0x34
[ 20.264677] __might_resched+0x1a0/0x280
[ 20.264679] __might_sleep+0x58/0x90
[ 20.264681] vmci_read_data+0x74/0x120 [vmw_vmci]
[ 20.264683] vmci_dispatch_dgs+0x64/0x204 [vmw_vmci]
[ 20.264686] tasklet_action_common.constprop.0+0x13c/0x150
[ 20.264688] tasklet_action+0x40/0x50
[ 20.264689] __do_softirq+0x23c/0x6b4
[ 20.264690] __irq_exit_rcu+0x104/0x214
[ 20.264691] irq_exit_rcu+0x1c/0x50
[ 20.264693] el1_interrupt+0x38/0x6c
[ 20.264695] el1h_64_irq_handler+0x18/0x24
[ 20.264696] el1h_64_irq+0x68/0x6c
[ 20.264697] preempt_count_sub+0xa4/0xe0
[ 20.264698] _raw_spin_unlock_irqrestore+0x64/0xb0
[ 20.264701] vmci_send_datagram+0x7c/0xa0 [vmw_vmci]
[ 20.264703] vmci_datagram_dispatch+0x84/0x100 [vmw_vmci]
[ 20.264706] vmci_datagram_send+0x2c/0x40 [vmw_vmci]
[ 20.264709] vmci_transport_send_control_pkt+0xb8/0x120 [vmw_vsock_vmci_transport]
[ 20.264711] vmci_transport_connect+0x40/0x7c [vmw_vsock_vmci_transport]
[ 20.264713] vsock_connect+0x278/0x330 [vsock]
[ 20.264715] __sys_connect_file+0x8c/0xc0
[ 20.264718] __sys_connect+0x84/0xb4
[ 20.264720] __arm64_sys_connect+0x2c/0x3c
[ 20.264721] invoke_syscall+0x78/0x100
[ 20.264723] el0_svc_common.constprop.0+0x68/0x124
[ 20.264724] do_el0_svc+0x38/0x4c
[ 20.264725] el0_svc+0x60/0x180
[ 20.264726] el0t_64_sync_handler+0x11c/0x150
[ 20.264728] el0t_64_sync+0x190/0x194 |
In the Linux kernel, the following vulnerability has been resolved:
reset: uniphier-glue: Fix possible null-ptr-deref
It will cause null-ptr-deref when resource_size(res) invoked,
if platform_get_resource() returns NULL. |