| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: fix data-race around dp->dccps_mss_cache
dccp_sendmsg() reads dp->dccps_mss_cache before locking the socket.
Same thing in do_dccp_getsockopt().
Add READ_ONCE()/WRITE_ONCE() annotations,
and change dccp_sendmsg() to check again dccps_mss_cache
after socket is locked. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Don't leak a resource on swapout move error
If moving the bo to system for swapout failed, we were leaking
a resource. Fix. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: correct grp validation in ext4_mb_good_group
Group corruption check will access memory of grp and will trigger kernel
crash if grp is NULL. So do NULL check before corruption check. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix warning when putting transaction with qgroups enabled after abort
If we have a transaction abort with qgroups enabled we get a warning
triggered when doing the final put on the transaction, like this:
[552.6789] ------------[ cut here ]------------
[552.6815] WARNING: CPU: 4 PID: 81745 at fs/btrfs/transaction.c:144 btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6817] Modules linked in: btrfs blake2b_generic xor (...)
[552.6819] CPU: 4 PID: 81745 Comm: btrfs-transacti Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[552.6819] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[552.6819] RIP: 0010:btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6821] Code: bd a0 01 00 (...)
[552.6821] RSP: 0018:ffffa168c0527e28 EFLAGS: 00010286
[552.6821] RAX: ffff936042caed00 RBX: ffff93604a3eb448 RCX: 0000000000000000
[552.6821] RDX: ffff93606421b028 RSI: ffffffff92ff0878 RDI: ffff93606421b010
[552.6821] RBP: ffff93606421b000 R08: 0000000000000000 R09: ffffa168c0d07c20
[552.6821] R10: 0000000000000000 R11: ffff93608dc52950 R12: ffffa168c0527e70
[552.6821] R13: ffff93606421b000 R14: ffff93604a3eb420 R15: ffff93606421b028
[552.6821] FS: 0000000000000000(0000) GS:ffff93675fb00000(0000) knlGS:0000000000000000
[552.6821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[552.6821] CR2: 0000558ad262b000 CR3: 000000014feda005 CR4: 0000000000370ee0
[552.6822] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[552.6822] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[552.6822] Call Trace:
[552.6822] <TASK>
[552.6822] ? __warn+0x80/0x130
[552.6822] ? btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6824] ? report_bug+0x1f4/0x200
[552.6824] ? handle_bug+0x42/0x70
[552.6824] ? exc_invalid_op+0x14/0x70
[552.6824] ? asm_exc_invalid_op+0x16/0x20
[552.6824] ? btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6826] btrfs_cleanup_transaction+0xe7/0x5e0 [btrfs]
[552.6828] ? _raw_spin_unlock_irqrestore+0x23/0x40
[552.6828] ? try_to_wake_up+0x94/0x5e0
[552.6828] ? __pfx_process_timeout+0x10/0x10
[552.6828] transaction_kthread+0x103/0x1d0 [btrfs]
[552.6830] ? __pfx_transaction_kthread+0x10/0x10 [btrfs]
[552.6832] kthread+0xee/0x120
[552.6832] ? __pfx_kthread+0x10/0x10
[552.6832] ret_from_fork+0x29/0x50
[552.6832] </TASK>
[552.6832] ---[ end trace 0000000000000000 ]---
This corresponds to this line of code:
void btrfs_put_transaction(struct btrfs_transaction *transaction)
{
(...)
WARN_ON(!RB_EMPTY_ROOT(
&transaction->delayed_refs.dirty_extent_root));
(...)
}
The warning happens because btrfs_qgroup_destroy_extent_records(), called
in the transaction abort path, we free all entries from the rbtree
"dirty_extent_root" with rbtree_postorder_for_each_entry_safe(), but we
don't actually empty the rbtree - it's still pointing to nodes that were
freed.
So set the rbtree's root node to NULL to avoid this warning (assign
RB_ROOT). |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix infinite loop in nilfs_mdt_get_block()
If the disk image that nilfs2 mounts is corrupted and a virtual block
address obtained by block lookup for a metadata file is invalid,
nilfs_bmap_lookup_at_level() may return the same internal return code as
-ENOENT, meaning the block does not exist in the metadata file.
This duplication of return codes confuses nilfs_mdt_get_block(), causing
it to read and create a metadata block indefinitely.
In particular, if this happens to the inode metadata file, ifile,
semaphore i_rwsem can be left held, causing task hangs in lock_mount.
Fix this issue by making nilfs_bmap_lookup_at_level() treat virtual block
address translation failures with -ENOENT as metadata corruption instead
of returning the error code. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
Syzbot found a kernel BUG in hfs_bnode_put():
kernel BUG at fs/hfs/bnode.c:466!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3634 Comm: kworker/u4:5 Not tainted 6.1.0-rc7-syzkaller-00190-g97ee9d1c1696 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:hfs_bnode_put+0x46f/0x480 fs/hfs/bnode.c:466
Code: 8a 80 ff e9 73 fe ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a0 fe ff ff 48 89 df e8 db 8a 80 ff e9 93 fe ff ff e8 a1 68 2c ff <0f> 0b e8 9a 68 2c ff 0f 0b 0f 1f 84 00 00 00 00 00 55 41 57 41 56
RSP: 0018:ffffc90003b4f258 EFLAGS: 00010293
RAX: ffffffff825e318f RBX: 0000000000000000 RCX: ffff8880739dd7c0
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003b4f430 R08: ffffffff825e2d9b R09: ffffed10045157d1
R10: ffffed10045157d1 R11: 1ffff110045157d0 R12: ffff8880228abe80
R13: ffff88807016c000 R14: dffffc0000000000 R15: ffff8880228abe00
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa6ebe88718 CR3: 000000001e93d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
hfs_write_inode+0x1bc/0xb40
write_inode fs/fs-writeback.c:1440 [inline]
__writeback_single_inode+0x4d6/0x670 fs/fs-writeback.c:1652
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1878
__writeback_inodes_wb+0x125/0x420 fs/fs-writeback.c:1949
wb_writeback+0x440/0x7b0 fs/fs-writeback.c:2054
wb_check_start_all fs/fs-writeback.c:2176 [inline]
wb_do_writeback fs/fs-writeback.c:2202 [inline]
wb_workfn+0x827/0xef0 fs/fs-writeback.c:2235
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
The BUG_ON() is triggered at here:
/* Dispose of resources used by a node */
void hfs_bnode_put(struct hfs_bnode *node)
{
if (node) {
<skipped>
BUG_ON(!atomic_read(&node->refcnt)); <- we have issue here!!!!
<skipped>
}
}
By tracing the refcnt, I found the node is created by hfs_bmap_alloc()
with refcnt 1. Then the node is used by hfs_btree_write(). There is a
missing of hfs_bnode_get() after find the node. The issue happened in
following path:
<alloc>
hfs_bmap_alloc
hfs_bnode_find
__hfs_bnode_create <- allocate a new node with refcnt 1.
hfs_bnode_put <- decrease the refcnt
<write>
hfs_btree_write
hfs_bnode_find
__hfs_bnode_create
hfs_bnode_findhash <- find the node without refcnt increased.
hfs_bnode_put <- trigger the BUG_ON() since refcnt is 0. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: mm: add missing memcpy in kasan_init
Hi Atish,
It seems that the panic is due to the missing memcpy during kasan_init.
Could you please check whether this patch is helpful?
When doing kasan_populate, the new allocated base_pud/base_p4d should
contain kasan_early_shadow_{pud, p4d}'s content. Add the missing memcpy
to avoid page fault when read/write kasan shadow region.
Tested on:
- qemu with sv57 and CONFIG_KASAN on.
- qemu with sv48 and CONFIG_KASAN on. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored
Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE
is untagged"), mte_sync_tags() was only called for pte_tagged() entries
(those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use
test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently
setting PG_mte_tagged on an untagged page.
The above commit was required as guests may enable MTE without any
control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM.
However, the side-effect was that any page with a PTE that looked like
swap (or migration) was getting PG_mte_tagged set automatically. A
subsequent page copy (e.g. migration) copied the tags to the destination
page even if the tags were owned by KASAN.
This issue was masked by the page_kasan_tag_reset() call introduced in
commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags").
When this commit was reverted (20794545c146), KASAN started reporting
access faults because the overriding tags in a page did not match the
original page->flags (with CONFIG_KASAN_HW_TAGS=y):
BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26
Read at addr f5ff000017f2e000 by task syz-executor.1/2218
Pointer tag: [f5], memory tag: [f2]
Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual
place where tags are cleared (mte_sync_page_tags()) or restored
(mte_restore_tags()). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix NULL ptr deref by checking new_crtc_state
intel_atomic_get_new_crtc_state can return NULL, unless crtc state wasn't
obtained previously with intel_atomic_get_crtc_state, so we must check it
for NULLness here, just as in many other places, where we can't guarantee
that intel_atomic_get_crtc_state was called.
We are currently getting NULL ptr deref because of that, so this fix was
confirmed to help.
(cherry picked from commit 1d5b09f8daf859247a1ea65b0d732a24d88980d8) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix NULL-deref on snapshot tear down
In case of early initialisation errors and on platforms that do not use
the DPU controller, the deinitilisation code can be called with the kms
pointer set to NULL.
Patchwork: https://patchwork.freedesktop.org/patch/525099/ |
| In the Linux kernel, the following vulnerability has been resolved:
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the
string is not guaranteed to be NULL terminated when xdbc_trace() is called.
Reserve an extra byte, which will be zeroed automatically because 'buf' is
a static variable, in order to avoid troubles, should it happen. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: report devlink_port_type_warn source device
devlink_port_type_warn is scheduled for port devlink and warning
when the port type is not set. But from this warning it is not easy
found out which device (driver) has no devlink port set.
[ 3709.975552] Type was not set for devlink port.
[ 3709.975579] WARNING: CPU: 1 PID: 13092 at net/devlink/leftover.c:6775 devlink_port_type_warn+0x11/0x20
[ 3709.993967] Modules linked in: openvswitch nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nfnetlink bluetooth rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs vhost_net vhost vhost_iotlb tap tun bridge stp llc qrtr intel_rapl_msr intel_rapl_common i10nm_edac nfit libnvdimm x86_pkg_temp_thermal mlx5_ib intel_powerclamp coretemp dell_wmi ledtrig_audio sparse_keymap ipmi_ssif kvm_intel ib_uverbs rfkill ib_core video kvm iTCO_wdt acpi_ipmi intel_vsec irqbypass ipmi_si iTCO_vendor_support dcdbas ipmi_devintf mei_me ipmi_msghandler rapl mei intel_cstate isst_if_mmio isst_if_mbox_pci dell_smbios intel_uncore isst_if_common i2c_i801 dell_wmi_descriptor wmi_bmof i2c_smbus intel_pch_thermal pcspkr acpi_power_meter xfs libcrc32c sd_mod sg nvme_tcp mgag200 i2c_algo_bit nvme_fabrics drm_shmem_helper drm_kms_helper nvme syscopyarea ahci sysfillrect sysimgblt nvme_core fb_sys_fops crct10dif_pclmul libahci mlx5_core sfc crc32_pclmul nvme_common drm
[ 3709.994030] crc32c_intel mtd t10_pi mlxfw libata tg3 mdio megaraid_sas psample ghash_clmulni_intel pci_hyperv_intf wmi dm_multipath sunrpc dm_mirror dm_region_hash dm_log dm_mod be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse
[ 3710.108431] CPU: 1 PID: 13092 Comm: kworker/1:1 Kdump: loaded Not tainted 5.14.0-319.el9.x86_64 #1
[ 3710.108435] Hardware name: Dell Inc. PowerEdge R750/0PJ80M, BIOS 1.8.2 09/14/2022
[ 3710.108437] Workqueue: events devlink_port_type_warn
[ 3710.108440] RIP: 0010:devlink_port_type_warn+0x11/0x20
[ 3710.108443] Code: 84 76 fe ff ff 48 c7 03 20 0e 1a ad 31 c0 e9 96 fd ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 48 c7 c7 18 24 4e ad e8 ef 71 62 ff <0f> 0b c3 cc cc cc cc 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f6 87
[ 3710.108445] RSP: 0018:ff3b6d2e8b3c7e90 EFLAGS: 00010282
[ 3710.108447] RAX: 0000000000000000 RBX: ff366d6580127080 RCX: 0000000000000027
[ 3710.108448] RDX: 0000000000000027 RSI: 00000000ffff86de RDI: ff366d753f41f8c8
[ 3710.108449] RBP: ff366d658ff5a0c0 R08: ff366d753f41f8c0 R09: ff3b6d2e8b3c7e18
[ 3710.108450] R10: 0000000000000001 R11: 0000000000000023 R12: ff366d753f430600
[ 3710.108451] R13: ff366d753f436900 R14: 0000000000000000 R15: ff366d753f436905
[ 3710.108452] FS: 0000000000000000(0000) GS:ff366d753f400000(0000) knlGS:0000000000000000
[ 3710.108453] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3710.108454] CR2: 00007f1c57bc74e0 CR3: 000000111d26a001 CR4: 0000000000773ee0
[ 3710.108456] PKRU: 55555554
[ 3710.108457] Call Trace:
[ 3710.108458] <TASK>
[ 3710.108459] process_one_work+0x1e2/0x3b0
[ 3710.108466] ? rescuer_thread+0x390/0x390
[ 3710.108468] worker_thread+0x50/0x3a0
[ 3710.108471] ? rescuer_thread+0x390/0x390
[ 3710.108473] kthread+0xdd/0x100
[ 3710.108477] ? kthread_complete_and_exit+0x20/0x20
[ 3710.108479] ret_from_fork+0x1f/0x30
[ 3710.108485] </TASK>
[ 3710.108486] ---[ end trace 1b4b23cd0c65d6a0 ]---
After patch:
[ 402.473064] ice 0000:41:00.0: Type was not set for devlink port.
[ 402.473064] ice 0000:41:00.1: Type was not set for devlink port. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mxsfb: Disable overlay plane in mxsfb_plane_overlay_atomic_disable()
When disabling overlay plane in mxsfb_plane_overlay_atomic_update(),
overlay plane's framebuffer pointer is NULL. So, dereferencing it would
cause a kernel Oops(NULL pointer dereferencing). Fix the issue by
disabling overlay plane in mxsfb_plane_overlay_atomic_disable() instead. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe()
I found a null pointer reference in arch_prepare_kprobe():
# echo 'p cmdline_proc_show' > kprobe_events
# echo 'p cmdline_proc_show+16' >> kprobe_events
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc000000000050bfc
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10
NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc
REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006
CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0
...
NIP arch_prepare_kprobe+0x10c/0x2d0
LR arch_prepare_kprobe+0xfc/0x2d0
Call Trace:
0xc0000000012f77a0 (unreliable)
register_kprobe+0x3c0/0x7a0
__register_trace_kprobe+0x140/0x1a0
__trace_kprobe_create+0x794/0x1040
trace_probe_create+0xc4/0xe0
create_or_delete_trace_kprobe+0x2c/0x80
trace_parse_run_command+0xf0/0x210
probes_write+0x20/0x40
vfs_write+0xfc/0x450
ksys_write+0x84/0x140
system_call_exception+0x17c/0x3a0
system_call_vectored_common+0xe8/0x278
--- interrupt: 3000 at 0x7fffa5682de0
NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000
REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e)
MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000
The address being probed has some special:
cmdline_proc_show: Probe based on ftrace
cmdline_proc_show+16: Probe for the next instruction at the ftrace location
The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets
set to NULL. In arch_prepare_kprobe() it will check for:
...
prev = get_kprobe(p->addr - 1);
preempt_enable_no_resched();
if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
...
If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur
with a null pointer reference. At this point prev->addr will not be a
prefixed instruction, so the check can be skipped.
Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn'
to fix this problem.
[mpe: Trim oops] |
| In the Linux kernel, the following vulnerability has been resolved:
ipmi: fix use after free in _ipmi_destroy_user()
The intf_free() function frees the "intf" pointer so we cannot
dereference it again on the next line. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-core: fix memory leak in dhchap_ctrl_secret
Free dhchap_secret in nvme_ctrl_dhchap_ctrl_secret_store() before we
return when nvme_auth_generate_key() returns error. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Do not share the name pointer between components
By sharing 'name' directly, tearing down components may lead to
use-after-free errors. Duplicate the name to avoid that.
At the same time, update the order of operations - since commit
cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via
config") the framework does not override component->name if set before
invoking the initializer. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Correctly handle Rx checksum offload errors
The stmmac_rx function would previously set skb->ip_summed to
CHECKSUM_UNNECESSARY if hardware checksum offload (CoE) was enabled
and the packet was of a known IP ethertype.
However, this logic failed to check if the hardware had actually
reported a checksum error. The hardware status, indicating a header or
payload checksum failure, was being ignored at this stage. This could
cause corrupt packets to be passed up the network stack as valid.
This patch corrects the logic by checking the `csum_none` status flag,
which is set when the hardware reports a checksum error. If this flag
is set, skb->ip_summed is now correctly set to CHECKSUM_NONE,
ensuring the kernel's network stack will perform its own validation and
properly handle the corrupt packet. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gpusvm: fix hmm_pfn_to_map_order() usage
Handle the case where the hmm range partially covers a huge page (like
2M), otherwise we can potentially end up doing something nasty like
mapping memory which is outside the range, and maybe not even mapped by
the mm. Fix is based on the xe userptr code, which in a future patch
will directly use gpusvm, so needs alignment here.
v2:
- Add kernel-doc (Matt B)
- s/fls/ilog2/ (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: Prevent TOCTOU out-of-bounds write
For the following path not holding the sock lock,
sctp_diag_dump() -> sctp_for_each_endpoint() -> sctp_ep_dump()
make sure not to exceed bounds in case the address list has grown
between buffer allocation (time-of-check) and write (time-of-use). |