| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| It was possible to craft an email that showed a tracking link as an attachment. If the user attempted to open the attachment, Thunderbird automatically accessed the link. The configuration to block remote content did not prevent that. Thunderbird has been fixed to no longer allow access to web pages listed in the X-Mozilla-External-Attachment-URL header of an email. This vulnerability affects Thunderbird < 128.10.1 and Thunderbird < 138.0.1. |
| Thunderbird's handling of the X-Mozilla-External-Attachment-URL header can be exploited to execute JavaScript in the file:/// context. By crafting a nested email attachment (message/rfc822) and setting its content type to application/pdf, Thunderbird may incorrectly render it as HTML when opened, allowing the embedded JavaScript to run without requiring a file download. This behavior relies on Thunderbird auto-saving the attachment to /tmp and linking to it via the file:/// protocol, potentially enabling JavaScript execution as part of the HTML. This vulnerability affects Thunderbird < 128.10.1 and Thunderbird < 138.0.1. |
| Thunderbird parses addresses in a way that can allow sender spoofing in case the server allows an invalid From address to be used. For example, if the From header contains an (invalid) value "Spoofed Name ", Thunderbird treats spoofed@example.com as the actual address. This vulnerability affects Thunderbird < 128.10.1 and Thunderbird < 138.0.1. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Wikimedia Foundation MediaWiki. This vulnerability is associated with program files includes/htmlform/fields/HTMLMultiSelectField.Php.
This issue affects MediaWiki: before 1.39.12, 1.42.6, 1.43.1. |
| Memory safety bugs present in Firefox 136, Thunderbird 136, Firefox ESR 128.8, and Thunderbird 128.8. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 137, Firefox ESR < 128.9, Thunderbird < 137, and Thunderbird < 128.9. |
| A crafted URL containing specific Unicode characters could have hidden the true origin of the page, resulting in a potential spoofing attack. This vulnerability affects Firefox < 137, Firefox ESR < 128.9, Thunderbird < 137, and Thunderbird < 128.9. |
| JavaScript code running while transforming a document with the XSLTProcessor could lead to a use-after-free. This vulnerability affects Firefox < 137, Firefox ESR < 115.22, Firefox ESR < 128.9, Thunderbird < 137, and Thunderbird < 128.9. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix slab-out-of-bounds read in ea_get()
During the "size_check" label in ea_get(), the code checks if the extended
attribute list (xattr) size matches ea_size. If not, it logs
"ea_get: invalid extended attribute" and calls print_hex_dump().
Here, EALIST_SIZE(ea_buf->xattr) returns 4110417968, which exceeds
INT_MAX (2,147,483,647). Then ea_size is clamped:
int size = clamp_t(int, ea_size, 0, EALIST_SIZE(ea_buf->xattr));
Although clamp_t aims to bound ea_size between 0 and 4110417968, the upper
limit is treated as an int, causing an overflow above 2^31 - 1. This leads
"size" to wrap around and become negative (-184549328).
The "size" is then passed to print_hex_dump() (called "len" in
print_hex_dump()), it is passed as type size_t (an unsigned
type), this is then stored inside a variable called
"int remaining", which is then assigned to "int linelen" which
is then passed to hex_dump_to_buffer(). In print_hex_dump()
the for loop, iterates through 0 to len-1, where len is
18446744073525002176, calling hex_dump_to_buffer()
on each iteration:
for (i = 0; i < len; i += rowsize) {
linelen = min(remaining, rowsize);
remaining -= rowsize;
hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
linebuf, sizeof(linebuf), ascii);
...
}
The expected stopping condition (i < len) is effectively broken
since len is corrupted and very large. This eventually leads to
the "ptr+i" being passed to hex_dump_to_buffer() to get closer
to the end of the actual bounds of "ptr", eventually an out of
bounds access is done in hex_dump_to_buffer() in the following
for loop:
for (j = 0; j < len; j++) {
if (linebuflen < lx + 2)
goto overflow2;
ch = ptr[j];
...
}
To fix this we should validate "EALIST_SIZE(ea_buf->xattr)"
before it is utilised. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix UBSAN panic in samsung_clk_init()
With UBSAN_ARRAY_BOUNDS=y, I'm hitting the below panic due to
dereferencing `ctx->clk_data.hws` before setting
`ctx->clk_data.num = nr_clks`. Move that up to fix the crash.
UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
<snip>
Call trace:
samsung_clk_init+0x110/0x124 (P)
samsung_clk_init+0x48/0x124 (L)
samsung_cmu_register_one+0x3c/0xa0
exynos_arm64_register_cmu+0x54/0x64
__gs101_cmu_top_of_clk_init_declare+0x28/0x60
... |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: use aead_request_free to match aead_request_alloc
Use aead_request_free() instead of kfree() to properly free memory
allocated by aead_request_alloc(). This ensures sensitive crypto data
is zeroed before being freed. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_hfsc: make hfsc_qlen_notify() idempotent
hfsc_qlen_notify() is not idempotent either and not friendly
to its callers, like fq_codel_dequeue(). Let's make it idempotent
to ease qdisc_tree_reduce_backlog() callers' life:
1. update_vf() decreases cl->cl_nactive, so we can check whether it is
non-zero before calling it.
2. eltree_remove() always removes RB node cl->el_node, but we can use
RB_EMPTY_NODE() + RB_CLEAR_NODE() to make it safe. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: core: Clear table_sz when rproc_shutdown
There is case as below could trigger kernel dump:
Use U-Boot to start remote processor(rproc) with resource table
published to a fixed address by rproc. After Kernel boots up,
stop the rproc, load a new firmware which doesn't have resource table
,and start rproc.
When starting rproc with a firmware not have resource table,
`memcpy(loaded_table, rproc->cached_table, rproc->table_sz)` will
trigger dump, because rproc->cache_table is set to NULL during the last
stop operation, but rproc->table_sz is still valid.
This issue is found on i.MX8MP and i.MX9.
Dump as below:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af63000
[0000000000000000] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 UID: 0 PID: 1060 Comm: sh Not tainted 6.14.0-rc7-next-20250317-dirty #38
Hardware name: NXP i.MX8MPlus EVK board (DT)
pstate: a0000005 (NzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __pi_memcpy_generic+0x110/0x22c
lr : rproc_start+0x88/0x1e0
Call trace:
__pi_memcpy_generic+0x110/0x22c (P)
rproc_boot+0x198/0x57c
state_store+0x40/0x104
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x120/0x1cc
vfs_write+0x240/0x378
ksys_write+0x70/0x108
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x10c
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xcc
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
Clear rproc->table_sz to address the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: max20086: fix invalid memory access
max20086_parse_regulators_dt() calls of_regulator_match() using an
array of struct of_regulator_match allocated on the stack for the
matches argument.
of_regulator_match() calls devm_of_regulator_put_matches(), which calls
devres_alloc() to allocate a struct devm_of_regulator_matches which will
be de-allocated using devm_of_regulator_put_matches().
struct devm_of_regulator_matches is populated with the stack allocated
matches array.
If the device fails to probe, devm_of_regulator_put_matches() will be
called and will try to call of_node_put() on that stack pointer,
generating the following dmesg entries:
max20086 6-0028: Failed to read DEVICE_ID reg: -121
kobject: '\xc0$\xa5\x03' (000000002cebcb7a): is not initialized, yet
kobject_put() is being called.
Followed by a stack trace matching the call flow described above.
Switch to allocating the matches array using devm_kcalloc() to
avoid accessing the stack pointer long after it's out of scope.
This also has the advantage of allowing multiple max20086 to probe
without overriding the data stored inside the global of_regulator_match. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: prevent out-of-bounds stream writes by validating *pos
ksmbd_vfs_stream_write() did not validate whether the write offset
(*pos) was within the bounds of the existing stream data length (v_len).
If *pos was greater than or equal to v_len, this could lead to an
out-of-bounds memory write.
This patch adds a check to ensure *pos is less than v_len before
proceeding. If the condition fails, -EINVAL is returned. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Add cond_resched() to ftrace_graph_set_hash()
When the kernel contains a large number of functions that can be traced,
the loop in ftrace_graph_set_hash() may take a lot of time to execute.
This may trigger the softlockup watchdog.
Add cond_resched() within the loop to allow the kernel to remain
responsive even when processing a large number of functions.
This matches the cond_resched() that is used in other locations of the
code that iterates over all functions that can be traced. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Verify event formats that have "%*p.."
The trace event verifier checks the formats of trace events to make sure
that they do not point at memory that is not in the trace event itself or
in data that will never be freed. If an event references data that was
allocated when the event triggered and that same data is freed before the
event is read, then the kernel can crash by reading freed memory.
The verifier runs at boot up (or module load) and scans the print formats
of the events and checks their arguments to make sure that dereferenced
pointers are safe. If the format uses "%*p.." the verifier will ignore it,
and that could be dangerous. Cover this case as well.
Also add to the sample code a use case of "%*pbl". |
| In the Linux kernel, the following vulnerability has been resolved:
objtool, media: dib8000: Prevent divide-by-zero in dib8000_set_dds()
If dib8000_set_dds()'s call to dib8000_read32() returns zero, the result
is a divide-by-zero. Prevent that from happening.
Fixes the following warning with an UBSAN kernel:
drivers/media/dvb-frontends/dib8000.o: warning: objtool: dib8000_tune() falls through to next function dib8096p_cfg_DibRx() |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel: KVM: Mask PEBS_ENABLE loaded for guest with vCPU's value.
When generating the MSR_IA32_PEBS_ENABLE value that will be loaded on
VM-Entry to a KVM guest, mask the value with the vCPU's desired PEBS_ENABLE
value. Consulting only the host kernel's host vs. guest masks results in
running the guest with PEBS enabled even when the guest doesn't want to use
PEBS. Because KVM uses perf events to proxy the guest virtual PMU, simply
looking at exclude_host can't differentiate between events created by host
userspace, and events created by KVM on behalf of the guest.
Running the guest with PEBS unexpectedly enabled typically manifests as
crashes due to a near-infinite stream of #PFs. E.g. if the guest hasn't
written MSR_IA32_DS_AREA, the CPU will hit page faults on address '0' when
trying to record PEBS events.
The issue is most easily reproduced by running `perf kvm top` from before
commit 7b100989b4f6 ("perf evlist: Remove __evlist__add_default") (after
which, `perf kvm top` effectively stopped using PEBS). The userspace side
of perf creates a guest-only PEBS event, which intel_guest_get_msrs()
misconstrues a guest-*owned* PEBS event.
Arguably, this is a userspace bug, as enabling PEBS on guest-only events
simply cannot work, and userspace can kill VMs in many other ways (there
is no danger to the host). However, even if this is considered to be bad
userspace behavior, there's zero downside to perf/KVM restricting PEBS to
guest-owned events.
Note, commit 854250329c02 ("KVM: x86/pmu: Disable guest PEBS temporarily
in two rare situations") fixed the case where host userspace is profiling
KVM *and* userspace, but missed the case where userspace is profiling only
KVM. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_qlen_notify() idempotent
htb_qlen_notify() always deactivates the HTB class and in fact could
trigger a warning if it is already deactivated. Therefore, it is not
idempotent and not friendly to its callers, like fq_codel_dequeue().
Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers'
life. |