| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.4, macOS Ventura 13.7.3, macOS Sonoma 14.7.3, visionOS 2.2, tvOS 18.2, watchOS 11.2, iOS 18.2 and iPadOS 18.2, macOS Sequoia 15.2. Processing web content may lead to a denial-of-service. |
| An out-of-bounds access issue was addressed with improved bounds checking. This issue is fixed in iPadOS 17.7.4, visionOS 2.2, tvOS 18.2, watchOS 11.2, iOS 18.2 and iPadOS 18.2, macOS Sonoma 14.7.2, macOS Sequoia 15.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| Cacti is an open source performance and fault management framework. Cacti has a SQL injection vulnerability in the get_discovery_results function of automation_devices.php using the network parameter. This vulnerability is fixed in 1.2.29. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_hash: unaligned atomic read on struct nft_set_ext
Access to genmask field in struct nft_set_ext results in unaligned
atomic read:
[ 72.130109] Unable to handle kernel paging request at virtual address ffff0000c2bb708c
[ 72.131036] Mem abort info:
[ 72.131213] ESR = 0x0000000096000021
[ 72.131446] EC = 0x25: DABT (current EL), IL = 32 bits
[ 72.132209] SET = 0, FnV = 0
[ 72.133216] EA = 0, S1PTW = 0
[ 72.134080] FSC = 0x21: alignment fault
[ 72.135593] Data abort info:
[ 72.137194] ISV = 0, ISS = 0x00000021, ISS2 = 0x00000000
[ 72.142351] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 72.145989] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 72.150115] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000237d27000
[ 72.154893] [ffff0000c2bb708c] pgd=0000000000000000, p4d=180000023ffff403, pud=180000023f84b403, pmd=180000023f835403,
+pte=0068000102bb7707
[ 72.163021] Internal error: Oops: 0000000096000021 [#1] SMP
[...]
[ 72.170041] CPU: 7 UID: 0 PID: 54 Comm: kworker/7:0 Tainted: G E 6.13.0-rc3+ #2
[ 72.170509] Tainted: [E]=UNSIGNED_MODULE
[ 72.170720] Hardware name: QEMU QEMU Virtual Machine, BIOS edk2-stable202302-for-qemu 03/01/2023
[ 72.171192] Workqueue: events_power_efficient nft_rhash_gc [nf_tables]
[ 72.171552] pstate: 21400005 (nzCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 72.171915] pc : nft_rhash_gc+0x200/0x2d8 [nf_tables]
[ 72.172166] lr : nft_rhash_gc+0x128/0x2d8 [nf_tables]
[ 72.172546] sp : ffff800081f2bce0
[ 72.172724] x29: ffff800081f2bd40 x28: ffff0000c2bb708c x27: 0000000000000038
[ 72.173078] x26: ffff0000c6780ef0 x25: ffff0000c643df00 x24: ffff0000c6778f78
[ 72.173431] x23: 000000000000001a x22: ffff0000c4b1f000 x21: ffff0000c6780f78
[ 72.173782] x20: ffff0000c2bb70dc x19: ffff0000c2bb7080 x18: 0000000000000000
[ 72.174135] x17: ffff0000c0a4e1c0 x16: 0000000000003000 x15: 0000ac26d173b978
[ 72.174485] x14: ffffffffffffffff x13: 0000000000000030 x12: ffff0000c6780ef0
[ 72.174841] x11: 0000000000000000 x10: ffff800081f2bcf8 x9 : ffff0000c3000000
[ 72.175193] x8 : 00000000000004be x7 : 0000000000000000 x6 : 0000000000000000
[ 72.175544] x5 : 0000000000000040 x4 : ffff0000c3000010 x3 : 0000000000000000
[ 72.175871] x2 : 0000000000003a98 x1 : ffff0000c2bb708c x0 : 0000000000000004
[ 72.176207] Call trace:
[ 72.176316] nft_rhash_gc+0x200/0x2d8 [nf_tables] (P)
[ 72.176653] process_one_work+0x178/0x3d0
[ 72.176831] worker_thread+0x200/0x3f0
[ 72.176995] kthread+0xe8/0xf8
[ 72.177130] ret_from_fork+0x10/0x20
[ 72.177289] Code: 54fff984 d503201f d2800080 91003261 (f820303f)
[ 72.177557] ---[ end trace 0000000000000000 ]---
Align struct nft_set_ext to word size to address this and
documentation it.
pahole reports that this increases the size of elements for rhash and
pipapo in 8 bytes on x86_64. |
| In elisp-mode.el in GNU Emacs before 30.1, a user who chooses to invoke elisp-completion-at-point (for code completion) on untrusted Emacs Lisp source code can trigger unsafe Lisp macro expansion that allows attackers to execute arbitrary code. (This unsafe expansion also occurs if a user chooses to enable on-the-fly diagnosis that byte compiles untrusted Emacs Lisp source code.) |
| A vulnerability has been identified in CPCI85 Central Processing/Communication (All versions < V05.30). The affected devices contain a secure element which is connected via an unencrypted SPI bus. This could allow an attacker with physical access to the SPI bus to observe the password used for the secure element authentication, and then use the secure element as an oracle to decrypt all encrypted update files. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: prevent use of deleted inode
syzbot reported a WARNING in nilfs_rmdir. [1]
Because the inode bitmap is corrupted, an inode with an inode number that
should exist as a ".nilfs" file was reassigned by nilfs_mkdir for "file0",
causing an inode duplication during execution. And this causes an
underflow of i_nlink in rmdir operations.
The inode is used twice by the same task to unmount and remove directories
".nilfs" and "file0", it trigger warning in nilfs_rmdir.
Avoid to this issue, check i_nlink in nilfs_iget(), if it is 0, it means
that this inode has been deleted, and iput is executed to reclaim it.
[1]
WARNING: CPU: 1 PID: 5824 at fs/inode.c:407 drop_nlink+0xc4/0x110 fs/inode.c:407
...
Call Trace:
<TASK>
nilfs_rmdir+0x1b0/0x250 fs/nilfs2/namei.c:342
vfs_rmdir+0x3a3/0x510 fs/namei.c:4394
do_rmdir+0x3b5/0x580 fs/namei.c:4453
__do_sys_rmdir fs/namei.c:4472 [inline]
__se_sys_rmdir fs/namei.c:4470 [inline]
__x64_sys_rmdir+0x47/0x50 fs/namei.c:4470
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: give up on paths longer than PATH_MAX
If the full path to be built by ceph_mdsc_build_path() happens to be
longer than PATH_MAX, then this function will enter an endless (retry)
loop, effectively blocking the whole task. Most of the machine
becomes unusable, making this a very simple and effective DoS
vulnerability.
I cannot imagine why this retry was ever implemented, but it seems
rather useless and harmful to me. Let's remove it and fail with
ENAMETOOLONG instead. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix UB due to uninitialized stack access in ip_vs_protocol_init()
Under certain kernel configurations when building with Clang/LLVM, the
compiler does not generate a return or jump as the terminator
instruction for ip_vs_protocol_init(), triggering the following objtool
warning during build time:
vmlinux.o: warning: objtool: ip_vs_protocol_init() falls through to next function __initstub__kmod_ip_vs_rr__935_123_ip_vs_rr_init6()
At runtime, this either causes an oops when trying to load the ipvs
module or a boot-time panic if ipvs is built-in. This same issue has
been reported by the Intel kernel test robot previously.
Digging deeper into both LLVM and the kernel code reveals this to be a
undefined behavior problem. ip_vs_protocol_init() uses a on-stack buffer
of 64 chars to store the registered protocol names and leaves it
uninitialized after definition. The function calls strnlen() when
concatenating protocol names into the buffer. With CONFIG_FORTIFY_SOURCE
strnlen() performs an extra step to check whether the last byte of the
input char buffer is a null character (commit 3009f891bb9f ("fortify:
Allow strlen() and strnlen() to pass compile-time known lengths")).
This, together with possibly other configurations, cause the following
IR to be generated:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #5 section ".init.text" align 16 !kcfi_type !29 {
%1 = alloca [64 x i8], align 16
...
14: ; preds = %11
%15 = getelementptr inbounds i8, ptr %1, i64 63
%16 = load i8, ptr %15, align 1
%17 = tail call i1 @llvm.is.constant.i8(i8 %16)
%18 = icmp eq i8 %16, 0
%19 = select i1 %17, i1 %18, i1 false
br i1 %19, label %20, label %23
20: ; preds = %14
%21 = call i64 @strlen(ptr noundef nonnull dereferenceable(1) %1) #23
...
23: ; preds = %14, %11, %20
%24 = call i64 @strnlen(ptr noundef nonnull dereferenceable(1) %1, i64 noundef 64) #24
...
}
The above code calculates the address of the last char in the buffer
(value %15) and then loads from it (value %16). Because the buffer is
never initialized, the LLVM GVN pass marks value %16 as undefined:
%13 = getelementptr inbounds i8, ptr %1, i64 63
br i1 undef, label %14, label %17
This gives later passes (SCCP, in particular) more DCE opportunities by
propagating the undef value further, and eventually removes everything
after the load on the uninitialized stack location:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #0 section ".init.text" align 16 !kcfi_type !11 {
%1 = alloca [64 x i8], align 16
...
12: ; preds = %11
%13 = getelementptr inbounds i8, ptr %1, i64 63
unreachable
}
In this way, the generated native code will just fall through to the
next function, as LLVM does not generate any code for the unreachable IR
instruction and leaves the function without a terminator.
Zero the on-stack buffer to avoid this possible UB. |
| iperf v3.17.1 was discovered to contain a segmentation violation via the iperf_exchange_parameters() function. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: don't do PV iret hypercall through hypercall page
Instead of jumping to the Xen hypercall page for doing the iret
hypercall, directly code the required sequence in xen-asm.S.
This is done in preparation of no longer using hypercall page at all,
as it has shown to cause problems with speculation mitigations.
This is part of XSA-466 / CVE-2024-53241. |
| In the Linux kernel, the following vulnerability has been resolved:
xen/netfront: fix crash when removing device
When removing a netfront device directly after a suspend/resume cycle
it might happen that the queues have not been setup again, causing a
crash during the attempt to stop the queues another time.
Fix that by checking the queues are existing before trying to stop
them.
This is XSA-465 / CVE-2024-53240. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: 6fire: Release resources at card release
The current 6fire code tries to release the resources right after the
call of usb6fire_chip_abort(). But at this moment, the card object
might be still in use (as we're calling snd_card_free_when_closed()).
For avoid potential UAFs, move the release of resources to the card's
private_free instead of the manual call of usb6fire_chip_destroy() at
the USB disconnect callback. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: fix use-after-free in device_for_each_child()
Syzbot has reported the following KASAN splat:
BUG: KASAN: slab-use-after-free in device_for_each_child+0x18f/0x1a0
Read of size 8 at addr ffff88801f605308 by task kbnepd bnep0/4980
CPU: 0 UID: 0 PID: 4980 Comm: kbnepd bnep0 Not tainted 6.12.0-rc4-00161-gae90f6a6170d #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x100/0x190
? device_for_each_child+0x18f/0x1a0
print_report+0x13a/0x4cb
? __virt_addr_valid+0x5e/0x590
? __phys_addr+0xc6/0x150
? device_for_each_child+0x18f/0x1a0
kasan_report+0xda/0x110
? device_for_each_child+0x18f/0x1a0
? __pfx_dev_memalloc_noio+0x10/0x10
device_for_each_child+0x18f/0x1a0
? __pfx_device_for_each_child+0x10/0x10
pm_runtime_set_memalloc_noio+0xf2/0x180
netdev_unregister_kobject+0x1ed/0x270
unregister_netdevice_many_notify+0x123c/0x1d80
? __mutex_trylock_common+0xde/0x250
? __pfx_unregister_netdevice_many_notify+0x10/0x10
? trace_contention_end+0xe6/0x140
? __mutex_lock+0x4e7/0x8f0
? __pfx_lock_acquire.part.0+0x10/0x10
? rcu_is_watching+0x12/0xc0
? unregister_netdev+0x12/0x30
unregister_netdevice_queue+0x30d/0x3f0
? __pfx_unregister_netdevice_queue+0x10/0x10
? __pfx_down_write+0x10/0x10
unregister_netdev+0x1c/0x30
bnep_session+0x1fb3/0x2ab0
? __pfx_bnep_session+0x10/0x10
? __pfx_lock_release+0x10/0x10
? __pfx_woken_wake_function+0x10/0x10
? __kthread_parkme+0x132/0x200
? __pfx_bnep_session+0x10/0x10
? kthread+0x13a/0x370
? __pfx_bnep_session+0x10/0x10
kthread+0x2b7/0x370
? __pfx_kthread+0x10/0x10
ret_from_fork+0x48/0x80
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 4974:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
__kmalloc_noprof+0x1d1/0x440
hci_alloc_dev_priv+0x1d/0x2820
__vhci_create_device+0xef/0x7d0
vhci_write+0x2c7/0x480
vfs_write+0x6a0/0xfc0
ksys_write+0x12f/0x260
do_syscall_64+0xc7/0x250
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 4979:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x4f/0x70
kfree+0x141/0x490
hci_release_dev+0x4d9/0x600
bt_host_release+0x6a/0xb0
device_release+0xa4/0x240
kobject_put+0x1ec/0x5a0
put_device+0x1f/0x30
vhci_release+0x81/0xf0
__fput+0x3f6/0xb30
task_work_run+0x151/0x250
do_exit+0xa79/0x2c30
do_group_exit+0xd5/0x2a0
get_signal+0x1fcd/0x2210
arch_do_signal_or_restart+0x93/0x780
syscall_exit_to_user_mode+0x140/0x290
do_syscall_64+0xd4/0x250
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In 'hci_conn_del_sysfs()', 'device_unregister()' may be called when
an underlying (kobject) reference counter is greater than 1. This
means that reparenting (happened when the device is actually freed)
is delayed and, during that delay, parent controller device (hciX)
may be deleted. Since the latter may create a dangling pointer to
freed parent, avoid that scenario by reparenting to NULL explicitly. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: handle NONHEAD !delta[1] lclusters gracefully
syzbot reported a WARNING in iomap_iter_done:
iomap_fiemap+0x73b/0x9b0 fs/iomap/fiemap.c:80
ioctl_fiemap fs/ioctl.c:220 [inline]
Generally, NONHEAD lclusters won't have delta[1]==0, except for crafted
images and filesystems created by pre-1.0 mkfs versions.
Previously, it would immediately bail out if delta[1]==0, which led to
inadequate decompressed lengths (thus FIEMAP is impacted). Treat it as
delta[1]=1 to work around these legacy mkfs versions.
`lclusterbits > 14` is illegal for compact indexes, error out too. |
| In the Linux kernel, the following vulnerability has been resolved:
unicode: Fix utf8_load() error path
utf8_load() requests the symbol "utf8_data_table" and then checks if the
requested UTF-8 version is supported. If it's unsupported, it tries to
put the data table using symbol_put(). If an unsupported version is
requested, symbol_put() fails like this:
kernel BUG at kernel/module/main.c:786!
RIP: 0010:__symbol_put+0x93/0xb0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? __symbol_put+0x93/0xb0
? exc_invalid_op+0x51/0x70
? __symbol_put+0x93/0xb0
? asm_exc_invalid_op+0x1a/0x20
? __pfx_cmp_name+0x10/0x10
? __symbol_put+0x93/0xb0
? __symbol_put+0x62/0xb0
utf8_load+0xf8/0x150
That happens because symbol_put() expects the unique string that
identify the symbol, instead of a pointer to the loaded symbol. Fix that
by using such string. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: CPPC: Fix possible null-ptr-deref for cpufreq_cpu_get_raw()
cpufreq_cpu_get_raw() may return NULL if the cpu is not in
policy->cpus cpu mask and it will cause null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: CPPC: Fix possible null-ptr-deref for cppc_get_cpu_cost()
cpufreq_cpu_get_raw() may return NULL if the cpu is not in
policy->cpus cpu mask and it will cause null pointer dereference,
so check NULL for cppc_get_cpu_cost(). |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the qp flush warnings in req
When the qp is in error state, the status of WQEs in the queue should be
set to error. Or else the following will appear.
[ 920.617269] WARNING: CPU: 1 PID: 21 at drivers/infiniband/sw/rxe/rxe_comp.c:756 rxe_completer+0x989/0xcc0 [rdma_rxe]
[ 920.617744] Modules linked in: rnbd_client(O) rtrs_client(O) rtrs_core(O) rdma_ucm rdma_cm iw_cm ib_cm crc32_generic rdma_rxe ip6_udp_tunnel udp_tunnel ib_uverbs ib_core loop brd null_blk ipv6
[ 920.618516] CPU: 1 PID: 21 Comm: ksoftirqd/1 Tainted: G O 6.1.113-storage+ #65
[ 920.618986] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 920.619396] RIP: 0010:rxe_completer+0x989/0xcc0 [rdma_rxe]
[ 920.619658] Code: 0f b6 84 24 3a 02 00 00 41 89 84 24 44 04 00 00 e9 2a f7 ff ff 39 ca bb 03 00 00 00 b8 0e 00 00 00 48 0f 45 d8 e9 15 f7 ff ff <0f> 0b e9 cb f8 ff ff 41 bf f5 ff ff ff e9 08 f8 ff ff 49 8d bc 24
[ 920.620482] RSP: 0018:ffff97b7c00bbc38 EFLAGS: 00010246
[ 920.620817] RAX: 0000000000000000 RBX: 000000000000000c RCX: 0000000000000008
[ 920.621183] RDX: ffff960dc396ebc0 RSI: 0000000000005400 RDI: ffff960dc4e2fbac
[ 920.621548] RBP: 0000000000000000 R08: 0000000000000001 R09: ffffffffac406450
[ 920.621884] R10: ffffffffac4060c0 R11: 0000000000000001 R12: ffff960dc4e2f800
[ 920.622254] R13: ffff960dc4e2f928 R14: ffff97b7c029c580 R15: 0000000000000000
[ 920.622609] FS: 0000000000000000(0000) GS:ffff960ef7d00000(0000) knlGS:0000000000000000
[ 920.622979] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 920.623245] CR2: 00007fa056965e90 CR3: 00000001107f1000 CR4: 00000000000006e0
[ 920.623680] Call Trace:
[ 920.623815] <TASK>
[ 920.623933] ? __warn+0x79/0xc0
[ 920.624116] ? rxe_completer+0x989/0xcc0 [rdma_rxe]
[ 920.624356] ? report_bug+0xfb/0x150
[ 920.624594] ? handle_bug+0x3c/0x60
[ 920.624796] ? exc_invalid_op+0x14/0x70
[ 920.624976] ? asm_exc_invalid_op+0x16/0x20
[ 920.625203] ? rxe_completer+0x989/0xcc0 [rdma_rxe]
[ 920.625474] ? rxe_completer+0x329/0xcc0 [rdma_rxe]
[ 920.625749] rxe_do_task+0x80/0x110 [rdma_rxe]
[ 920.626037] rxe_requester+0x625/0xde0 [rdma_rxe]
[ 920.626310] ? rxe_cq_post+0xe2/0x180 [rdma_rxe]
[ 920.626583] ? do_complete+0x18d/0x220 [rdma_rxe]
[ 920.626812] ? rxe_completer+0x1a3/0xcc0 [rdma_rxe]
[ 920.627050] rxe_do_task+0x80/0x110 [rdma_rxe]
[ 920.627285] tasklet_action_common.constprop.0+0xa4/0x120
[ 920.627522] handle_softirqs+0xc2/0x250
[ 920.627728] ? sort_range+0x20/0x20
[ 920.627942] run_ksoftirqd+0x1f/0x30
[ 920.628158] smpboot_thread_fn+0xc7/0x1b0
[ 920.628334] kthread+0xd6/0x100
[ 920.628504] ? kthread_complete_and_exit+0x20/0x20
[ 920.628709] ret_from_fork+0x1f/0x30
[ 920.628892] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: bfa: Fix use-after-free in bfad_im_module_exit()
BUG: KASAN: slab-use-after-free in __lock_acquire+0x2aca/0x3a20
Read of size 8 at addr ffff8881082d80c8 by task modprobe/25303
Call Trace:
<TASK>
dump_stack_lvl+0x95/0xe0
print_report+0xcb/0x620
kasan_report+0xbd/0xf0
__lock_acquire+0x2aca/0x3a20
lock_acquire+0x19b/0x520
_raw_spin_lock+0x2b/0x40
attribute_container_unregister+0x30/0x160
fc_release_transport+0x19/0x90 [scsi_transport_fc]
bfad_im_module_exit+0x23/0x60 [bfa]
bfad_init+0xdb/0xff0 [bfa]
do_one_initcall+0xdc/0x550
do_init_module+0x22d/0x6b0
load_module+0x4e96/0x5ff0
init_module_from_file+0xcd/0x130
idempotent_init_module+0x330/0x620
__x64_sys_finit_module+0xb3/0x110
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated by task 25303:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
fc_attach_transport+0x4f/0x4740 [scsi_transport_fc]
bfad_im_module_init+0x17/0x80 [bfa]
bfad_init+0x23/0xff0 [bfa]
do_one_initcall+0xdc/0x550
do_init_module+0x22d/0x6b0
load_module+0x4e96/0x5ff0
init_module_from_file+0xcd/0x130
idempotent_init_module+0x330/0x620
__x64_sys_finit_module+0xb3/0x110
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 25303:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x38/0x50
kfree+0x212/0x480
bfad_im_module_init+0x7e/0x80 [bfa]
bfad_init+0x23/0xff0 [bfa]
do_one_initcall+0xdc/0x550
do_init_module+0x22d/0x6b0
load_module+0x4e96/0x5ff0
init_module_from_file+0xcd/0x130
idempotent_init_module+0x330/0x620
__x64_sys_finit_module+0xb3/0x110
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Above issue happens as follows:
bfad_init
error = bfad_im_module_init()
fc_release_transport(bfad_im_scsi_transport_template);
if (error)
goto ext;
ext:
bfad_im_module_exit();
fc_release_transport(bfad_im_scsi_transport_template);
--> Trigger double release
Don't call bfad_im_module_exit() if bfad_im_module_init() failed. |