| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: ensure allocated iovec gets cleared for early failure
A previous commit reused the recyling infrastructure for early cleanup,
but this is not enough for the case where our internal caches have
overflowed. If this happens, then the allocated iovec can get leaked if
the request is also aborted early.
Reinstate the previous forced free of the iovec for that situation. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Flush shmem writes before mapping buffers CPU-uncached
The shmem layer zeroes out the new pages using cached mappings, and if
we don't CPU-flush we might leave dirty cachelines behind, leading to
potential data leaks and/or asynchronous buffer corruption when dirty
cachelines are evicted. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: validate skb length for unknown CC opcode
In hci_cmd_complete_evt(), if the command complete event has an unknown
opcode, we assume the first byte of the remaining skb->data contains the
return status. However, parameter data has previously been pulled in
hci_event_func(), which may leave the skb empty. If so, using skb->data[0]
for the return status uses un-init memory.
The fix is to check skb->len before using skb->data. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds
Add bounds checking to prevent writes past framebuffer boundaries when
rendering text near screen edges. Return early if the Y position is off-screen
and clip image height to screen boundary. Break from the rendering loop if the
X position is off-screen. When clipping image width to fit the screen, update
the character count to match the clipped width to prevent buffer size
mismatches.
Without the character count update, bit_putcs_aligned and bit_putcs_unaligned
receive mismatched parameters where the buffer is allocated for the clipped
width but cnt reflects the original larger count, causing out-of-bounds writes. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: fix uaf in proc_readdir_de()
Pde is erased from subdir rbtree through rb_erase(), but not set the node
to EMPTY, which may result in uaf access. We should use RB_CLEAR_NODE()
set the erased node to EMPTY, then pde_subdir_next() will return NULL to
avoid uaf access.
We found an uaf issue while using stress-ng testing, need to run testcase
getdent and tun in the same time. The steps of the issue is as follows:
1) use getdent to traverse dir /proc/pid/net/dev_snmp6/, and current
pde is tun3;
2) in the [time windows] unregister netdevice tun3 and tun2, and erase
them from rbtree. erase tun3 first, and then erase tun2. the
pde(tun2) will be released to slab;
3) continue to getdent process, then pde_subdir_next() will return
pde(tun2) which is released, it will case uaf access.
CPU 0 | CPU 1
-------------------------------------------------------------------------
traverse dir /proc/pid/net/dev_snmp6/ | unregister_netdevice(tun->dev) //tun3 tun2
sys_getdents64() |
iterate_dir() |
proc_readdir() |
proc_readdir_de() | snmp6_unregister_dev()
pde_get(de); | proc_remove()
read_unlock(&proc_subdir_lock); | remove_proc_subtree()
| write_lock(&proc_subdir_lock);
[time window] | rb_erase(&root->subdir_node, &parent->subdir);
| write_unlock(&proc_subdir_lock);
read_lock(&proc_subdir_lock); |
next = pde_subdir_next(de); |
pde_put(de); |
de = next; //UAF |
rbtree of dev_snmp6
|
pde(tun3)
/ \
NULL pde(tun2) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE
This data originates from userspace and is used in buffer offset
calculations which could potentially overflow causing an out-of-bounds
access. |
| In the Linux kernel, the following vulnerability has been resolved:
media: videobuf2: forbid remove_bufs when legacy fileio is active
vb2_ioctl_remove_bufs() call manipulates queue internal buffer list,
potentially overwriting some pointers used by the legacy fileio access
mode. Forbid that ioctl when fileio is active to protect internal queue
state between subsequent read/write calls. |
| In the Linux kernel, the following vulnerability has been resolved:
mm, swap: fix potential UAF issue for VMA readahead
Since commit 78524b05f1a3 ("mm, swap: avoid redundant swap device
pinning"), the common helper for allocating and preparing a folio in the
swap cache layer no longer tries to get a swap device reference
internally, because all callers of __read_swap_cache_async are already
holding a swap entry reference. The repeated swap device pinning isn't
needed on the same swap device.
Caller of VMA readahead is also holding a reference to the target entry's
swap device, but VMA readahead walks the page table, so it might encounter
swap entries from other devices, and call __read_swap_cache_async on
another device without holding a reference to it.
So it is possible to cause a UAF when swapoff of device A raced with
swapin on device B, and VMA readahead tries to read swap entries from
device A. It's not easy to trigger, but in theory, it could cause real
issues.
Make VMA readahead try to get the device reference first if the swap
device is a different one from the target entry. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: 6lowpan: reset link-local header on ipv6 recv path
Bluetooth 6lowpan.c netdev has header_ops, so it must set link-local
header for RX skb, otherwise things crash, eg. with AF_PACKET SOCK_RAW
Add missing skb_reset_mac_header() for uncompressed ipv6 RX path.
For the compressed one, it is done in lowpan_header_decompress().
Log: (BlueZ 6lowpan-tester Client Recv Raw - Success)
------
kernel BUG at net/core/skbuff.c:212!
Call Trace:
<IRQ>
...
packet_rcv (net/packet/af_packet.c:2152)
...
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
netif_rx (net/core/dev.c:5648)
chan_recv_cb (net/bluetooth/6lowpan.c:294 net/bluetooth/6lowpan.c:359)
------ |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Fix double free of GPIO device during unregister
regulator_unregister() already frees the associated GPIO device. On
ThinkPad X9 (Lunar Lake), this causes a double free issue that leads to
random failures when other drivers (typically Intel THC) attempt to
allocate interrupts. The root cause is that the reference count of the
pinctrl_intel_platform module unexpectedly drops to zero when this
driver defers its probe.
This behavior can also be reproduced by unloading the module directly.
Fix the issue by removing the redundant release of the GPIO device
during regulator unregistration. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: prevent possible shift-out-of-bounds in sctp_transport_update_rto
syzbot reported a possible shift-out-of-bounds [1]
Blamed commit added rto_alpha_max and rto_beta_max set to 1000.
It is unclear if some sctp users are setting very large rto_alpha
and/or rto_beta.
In order to prevent user regression, perform the test at run time.
Also add READ_ONCE() annotations as sysctl values can change under us.
[1]
UBSAN: shift-out-of-bounds in net/sctp/transport.c:509:41
shift exponent 64 is too large for 32-bit type 'unsigned int'
CPU: 0 UID: 0 PID: 16704 Comm: syz.2.2320 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:233 [inline]
__ubsan_handle_shift_out_of_bounds+0x27f/0x420 lib/ubsan.c:494
sctp_transport_update_rto.cold+0x1c/0x34b net/sctp/transport.c:509
sctp_check_transmitted+0x11c4/0x1c30 net/sctp/outqueue.c:1502
sctp_outq_sack+0x4ef/0x1b20 net/sctp/outqueue.c:1338
sctp_cmd_process_sack net/sctp/sm_sideeffect.c:840 [inline]
sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1372 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement gettimex64 with -EOPNOTSUPP
gve implemented a ptp_clock for sole use of do_aux_work at this time.
ptp_clock_gettime() and ptp_sys_offset() assume every ptp_clock has
implemented either gettimex64 or gettime64. Stub gettimex64 and return
-EOPNOTSUPP to prevent NULL dereferencing. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement settime64 with -EOPNOTSUPP
ptp_clock_settime() assumes every ptp_clock has implemented settime64().
Stub it with -EOPNOTSUPP to prevent a NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
fscrypt: fix left shift underflow when inode->i_blkbits > PAGE_SHIFT
When simulating an nvme device on qemu with both logical_block_size and
physical_block_size set to 8 KiB, an error trace appears during
partition table reading at boot time. The issue is caused by
inode->i_blkbits being larger than PAGE_SHIFT, which leads to a left
shift of -1 and triggering a UBSAN warning.
[ 2.697306] ------------[ cut here ]------------
[ 2.697309] UBSAN: shift-out-of-bounds in fs/crypto/inline_crypt.c:336:37
[ 2.697311] shift exponent -1 is negative
[ 2.697315] CPU: 3 UID: 0 PID: 274 Comm: (udev-worker) Not tainted 6.18.0-rc2+ #34 PREEMPT(voluntary)
[ 2.697317] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 2.697320] Call Trace:
[ 2.697324] <TASK>
[ 2.697325] dump_stack_lvl+0x76/0xa0
[ 2.697340] dump_stack+0x10/0x20
[ 2.697342] __ubsan_handle_shift_out_of_bounds+0x1e3/0x390
[ 2.697351] bh_get_inode_and_lblk_num.cold+0x12/0x94
[ 2.697359] fscrypt_set_bio_crypt_ctx_bh+0x44/0x90
[ 2.697365] submit_bh_wbc+0xb6/0x190
[ 2.697370] block_read_full_folio+0x194/0x270
[ 2.697371] ? __pfx_blkdev_get_block+0x10/0x10
[ 2.697375] ? __pfx_blkdev_read_folio+0x10/0x10
[ 2.697377] blkdev_read_folio+0x18/0x30
[ 2.697379] filemap_read_folio+0x40/0xe0
[ 2.697382] filemap_get_pages+0x5ef/0x7a0
[ 2.697385] ? mmap_region+0x63/0xd0
[ 2.697389] filemap_read+0x11d/0x520
[ 2.697392] blkdev_read_iter+0x7c/0x180
[ 2.697393] vfs_read+0x261/0x390
[ 2.697397] ksys_read+0x71/0xf0
[ 2.697398] __x64_sys_read+0x19/0x30
[ 2.697399] x64_sys_call+0x1e88/0x26a0
[ 2.697405] do_syscall_64+0x80/0x670
[ 2.697410] ? __x64_sys_newfstat+0x15/0x20
[ 2.697414] ? x64_sys_call+0x204a/0x26a0
[ 2.697415] ? do_syscall_64+0xb8/0x670
[ 2.697417] ? irqentry_exit_to_user_mode+0x2e/0x2a0
[ 2.697420] ? irqentry_exit+0x43/0x50
[ 2.697421] ? exc_page_fault+0x90/0x1b0
[ 2.697422] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 2.697425] RIP: 0033:0x75054cba4a06
[ 2.697426] Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
[ 2.697427] RSP: 002b:00007fff973723a0 EFLAGS: 00000202 ORIG_RAX: 0000000000000000
[ 2.697430] RAX: ffffffffffffffda RBX: 00005ea9a2c02760 RCX: 000075054cba4a06
[ 2.697432] RDX: 0000000000002000 RSI: 000075054c190000 RDI: 000000000000001b
[ 2.697433] RBP: 00007fff973723c0 R08: 0000000000000000 R09: 0000000000000000
[ 2.697434] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
[ 2.697434] R13: 00005ea9a2c027c0 R14: 00005ea9a2be5608 R15: 00005ea9a2be55f0
[ 2.697436] </TASK>
[ 2.697436] ---[ end trace ]---
This situation can happen for block devices because when
CONFIG_TRANSPARENT_HUGEPAGE is enabled, the maximum logical_block_size
is 64 KiB. set_init_blocksize() then sets the block device
inode->i_blkbits to 13, which is within this limit.
File I/O does not trigger this problem because for filesystems that do
not support the FS_LBS feature, sb_set_blocksize() prevents
sb->s_blocksize_bits from being larger than PAGE_SHIFT. During inode
allocation, alloc_inode()->inode_init_always() assigns inode->i_blkbits
from sb->s_blocksize_bits. Currently, only xfs_fs_type has the FS_LBS
flag, and since xfs I/O paths do not reach submit_bh_wbc(), it does not
hit the left-shift underflow issue.
[EB: use folio_pos() and consolidate the two shifts by i_blkbits] |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Don't overflow during division for dirty tracking
If pgshift is 63 then BITS_PER_TYPE(*bitmap->bitmap) * pgsize will overflow
to 0 and this triggers divide by 0.
In this case the index should just be 0, so reorganize things to divide
by shift and avoid hitting any overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential overflow of PCM transfer buffer
The PCM stream data in USB-audio driver is transferred over USB URB
packet buffers, and each packet size is determined dynamically. The
packet sizes are limited by some factors such as wMaxPacketSize USB
descriptor. OTOH, in the current code, the actually used packet sizes
are determined only by the rate and the PPS, which may be bigger than
the size limit above. This results in a buffer overflow, as reported
by syzbot.
Basically when the limit is smaller than the calculated packet size,
it implies that something is wrong, most likely a weird USB
descriptor. So the best option would be just to return an error at
the parameter setup time before doing any further operations.
This patch introduces such a sanity check, and returns -EINVAL when
the packet size is greater than maxpacksize. The comparison with
ep->packsize[1] alone should suffice since it's always equal or
greater than ep->packsize[0]. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: client: fix memory leak in smb3_fs_context_parse_param
The user calls fsconfig twice, but when the program exits, free() only
frees ctx->source for the second fsconfig, not the first.
Regarding fc->source, there is no code in the fs context related to its
memory reclamation.
To fix this memory leak, release the source memory corresponding to ctx
or fc before each parsing.
syzbot reported:
BUG: memory leak
unreferenced object 0xffff888128afa360 (size 96):
backtrace (crc 79c9c7ba):
kstrdup+0x3c/0x80 mm/util.c:84
smb3_fs_context_parse_param+0x229b/0x36c0 fs/smb/client/fs_context.c:1444
BUG: memory leak
unreferenced object 0xffff888112c7d900 (size 96):
backtrace (crc 79c9c7ba):
smb3_fs_context_fullpath+0x70/0x1b0 fs/smb/client/fs_context.c:629
smb3_fs_context_parse_param+0x2266/0x36c0 fs/smb/client/fs_context.c:1438 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: cancel mesh send timer when hdev removed
mesh_send_done timer is not canceled when hdev is removed, which causes
crash if the timer triggers after hdev is gone.
Cancel the timer when MGMT removes the hdev, like other MGMT timers.
Should fix the BUG: sporadically seen by BlueZ test bot
(in "Mesh - Send cancel - 1" test).
Log:
------
BUG: KASAN: slab-use-after-free in run_timer_softirq+0x76b/0x7d0
...
Freed by task 36:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x43/0x70
kfree+0x103/0x500
device_release+0x9a/0x210
kobject_put+0x100/0x1e0
vhci_release+0x18b/0x240
------ |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: fix use-after-free due to MST port state bypass
syzbot reported[1] a use-after-free when deleting an expired fdb. It is
due to a race condition between learning still happening and a port being
deleted, after all its fdbs have been flushed. The port's state has been
toggled to disabled so no learning should happen at that time, but if we
have MST enabled, it will bypass the port's state, that together with VLAN
filtering disabled can lead to fdb learning at a time when it shouldn't
happen while the port is being deleted. VLAN filtering must be disabled
because we flush the port VLANs when it's being deleted which will stop
learning. This fix adds a check for the port's vlan group which is
initialized to NULL when the port is getting deleted, that avoids the port
state bypass. When MST is enabled there would be a minimal new overhead
in the fast-path because the port's vlan group pointer is cache-hot.
[1] https://syzkaller.appspot.com/bug?extid=dd280197f0f7ab3917be |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: avoid data corruption on cq descriptor number
Since commit 30f241fcf52a ("xsk: Fix immature cq descriptor
production"), the descriptor number is stored in skb control block and
xsk_cq_submit_addr_locked() relies on it to put the umem addrs onto
pool's completion queue.
skb control block shouldn't be used for this purpose as after transmit
xsk doesn't have control over it and other subsystems could use it. This
leads to the following kernel panic due to a NULL pointer dereference.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 1 PID: 927 Comm: p4xsk.bin Not tainted 6.16.12+deb14-cloud-amd64 #1 PREEMPT(lazy) Debian 6.16.12-1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:xsk_destruct_skb+0xd0/0x180
[...]
Call Trace:
<IRQ>
? napi_complete_done+0x7a/0x1a0
ip_rcv_core+0x1bb/0x340
ip_rcv+0x30/0x1f0
__netif_receive_skb_one_core+0x85/0xa0
process_backlog+0x87/0x130
__napi_poll+0x28/0x180
net_rx_action+0x339/0x420
handle_softirqs+0xdc/0x320
? handle_edge_irq+0x90/0x1e0
do_softirq.part.0+0x3b/0x60
</IRQ>
<TASK>
__local_bh_enable_ip+0x60/0x70
__dev_direct_xmit+0x14e/0x1f0
__xsk_generic_xmit+0x482/0xb70
? __remove_hrtimer+0x41/0xa0
? __xsk_generic_xmit+0x51/0xb70
? _raw_spin_unlock_irqrestore+0xe/0x40
xsk_sendmsg+0xda/0x1c0
__sys_sendto+0x1ee/0x200
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x84/0x2f0
? __pfx_pollwake+0x10/0x10
? __rseq_handle_notify_resume+0xad/0x4c0
? restore_fpregs_from_fpstate+0x3c/0x90
? switch_fpu_return+0x5b/0xe0
? do_syscall_64+0x204/0x2f0
? do_syscall_64+0x204/0x2f0
? do_syscall_64+0x204/0x2f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
[...]
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: 0x1c000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
Instead use the skb destructor_arg pointer along with pointer tagging.
As pointers are always aligned to 8B, use the bottom bit to indicate
whether this a single address or an allocated struct containing several
addresses. |