| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Fix deadlock in drm_sched_entity_kill_jobs_cb
The Mesa issue referenced below pointed out a possible deadlock:
[ 1231.611031] Possible interrupt unsafe locking scenario:
[ 1231.611033] CPU0 CPU1
[ 1231.611034] ---- ----
[ 1231.611035] lock(&xa->xa_lock#17);
[ 1231.611038] local_irq_disable();
[ 1231.611039] lock(&fence->lock);
[ 1231.611041] lock(&xa->xa_lock#17);
[ 1231.611044] <Interrupt>
[ 1231.611045] lock(&fence->lock);
[ 1231.611047]
*** DEADLOCK ***
In this example, CPU0 would be any function accessing job->dependencies
through the xa_* functions that don't disable interrupts (eg:
drm_sched_job_add_dependency(), drm_sched_entity_kill_jobs_cb()).
CPU1 is executing drm_sched_entity_kill_jobs_cb() as a fence signalling
callback so in an interrupt context. It will deadlock when trying to
grab the xa_lock which is already held by CPU0.
Replacing all xa_* usage by their xa_*_irq counterparts would fix
this issue, but Christian pointed out another issue: dma_fence_signal
takes fence.lock and so does dma_fence_add_callback.
dma_fence_signal() // locks f1.lock
-> drm_sched_entity_kill_jobs_cb()
-> foreach dependencies
-> dma_fence_add_callback() // locks f2.lock
This will deadlock if f1 and f2 share the same spinlock.
To fix both issues, the code iterating on dependencies and re-arming them
is moved out to drm_sched_entity_kill_jobs_work().
[phasta: commit message nits] |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Shutdown FW DMA in bnxt_shutdown()
The netif_close() call in bnxt_shutdown() only stops packet DMA. There
may be FW DMA for trace logging (recently added) that will continue. If
we kexec to a new kernel, the DMA will corrupt memory in the new kernel.
Add bnxt_hwrm_func_drv_unrgtr() to unregister the driver from the FW.
This will stop the FW DMA. In case the call fails, call pcie_flr() to
reset the function and stop the DMA. |
| In the Linux kernel, the following vulnerability has been resolved:
futex: Don't leak robust_list pointer on exec race
sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access()
to check if the calling task is allowed to access another task's
robust_list pointer. This check is racy against a concurrent exec() in the
target process.
During exec(), a task may transition from a non-privileged binary to a
privileged one (e.g., setuid binary) and its credentials/memory mappings
may change. If get_robust_list() performs ptrace_may_access() before
this transition, it may erroneously allow access to sensitive information
after the target becomes privileged.
A racy access allows an attacker to exploit a window during which
ptrace_may_access() passes before a target process transitions to a
privileged state via exec().
For example, consider a non-privileged task T that is about to execute a
setuid-root binary. An attacker task A calls get_robust_list(T) while T
is still unprivileged. Since ptrace_may_access() checks permissions
based on current credentials, it succeeds. However, if T begins exec
immediately afterwards, it becomes privileged and may change its memory
mappings. Because get_robust_list() proceeds to access T->robust_list
without synchronizing with exec() it may read user-space pointers from a
now-privileged process.
This violates the intended post-exec access restrictions and could
expose sensitive memory addresses or be used as a primitive in a larger
exploit chain. Consequently, the race can lead to unauthorized
disclosure of information across privilege boundaries and poses a
potential security risk.
Take a read lock on signal->exec_update_lock prior to invoking
ptrace_may_access() and accessing the robust_list/compat_robust_list.
This ensures that the target task's exec state remains stable during the
check, allowing for consistent and synchronized validation of
credentials. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Disable periods-elapsed work when closing PCM
avs_dai_fe_shutdown() handles the shutdown procedure for HOST HDAudio
stream while period-elapsed work services its IRQs. As the former
frees the DAI's private context, these two operations shall be
synchronized to avoid slab-use-after-free or worse errors. |
| Inappropriate implementation in WebRTC in Google Chrome prior to 143.0.7499.41 allowed a remote attacker to perform arbitrary read/write via a crafted HTML page. (Chromium security severity: Low) |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: act_connmark: initialize struct tc_ife to fix kernel leak
In tcf_connmark_dump(), the variable 'opt' was partially initialized using a
designatied initializer. While the padding bytes are reamined
uninitialized. nla_put() copies the entire structure into a
netlink message, these uninitialized bytes leaked to userspace.
Initialize the structure with memset before assigning its fields
to ensure all members and padding are cleared prior to beign copied. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak
Fix a KMSAN kernel-infoleak detected by the syzbot .
[net?] KMSAN: kernel-infoleak in __skb_datagram_iter
In tcf_ife_dump(), the variable 'opt' was partially initialized using a
designatied initializer. While the padding bytes are reamined
uninitialized. nla_put() copies the entire structure into a
netlink message, these uninitialized bytes leaked to userspace.
Initialize the structure with memset before assigning its fields
to ensure all members and padding are cleared prior to beign copied.
This change silences the KMSAN report and prevents potential information
leaks from the kernel memory.
This fix has been tested and validated by syzbot. This patch closes the
bug reported at the following syzkaller link and ensures no infoleak. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds
Add bounds checking to prevent writes past framebuffer boundaries when
rendering text near screen edges. Return early if the Y position is off-screen
and clip image height to screen boundary. Break from the rendering loop if the
X position is off-screen. When clipping image width to fit the screen, update
the character count to match the clipped width to prevent buffer size
mismatches.
Without the character count update, bit_putcs_aligned and bit_putcs_unaligned
receive mismatched parameters where the buffer is allocated for the clipped
width but cnt reflects the original larger count, causing out-of-bounds writes. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE
This data originates from userspace and is used in buffer offset
calculations which could potentially overflow causing an out-of-bounds
access. |
| In the Linux kernel, the following vulnerability has been resolved:
media: videobuf2: forbid remove_bufs when legacy fileio is active
vb2_ioctl_remove_bufs() call manipulates queue internal buffer list,
potentially overwriting some pointers used by the legacy fileio access
mode. Forbid that ioctl when fileio is active to protect internal queue
state between subsequent read/write calls. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: int3472: Fix double free of GPIO device during unregister
regulator_unregister() already frees the associated GPIO device. On
ThinkPad X9 (Lunar Lake), this causes a double free issue that leads to
random failures when other drivers (typically Intel THC) attempt to
allocate interrupts. The root cause is that the reference count of the
pinctrl_intel_platform module unexpectedly drops to zero when this
driver defers its probe.
This behavior can also be reproduced by unloading the module directly.
Fix the issue by removing the redundant release of the GPIO device
during regulator unregistration. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix OOB access in parse_adv_monitor_pattern()
In the parse_adv_monitor_pattern() function, the value of
the 'length' variable is currently limited to HCI_MAX_EXT_AD_LENGTH(251).
The size of the 'value' array in the mgmt_adv_pattern structure is 31.
If the value of 'pattern[i].length' is set in the user space
and exceeds 31, the 'patterns[i].value' array can be accessed
out of bound when copied.
Increasing the size of the 'value' array in
the 'mgmt_adv_pattern' structure will break the userspace.
Considering this, and to avoid OOB access revert the limits for 'offset'
and 'length' back to the value of HCI_MAX_AD_LENGTH.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: fix received length check in big packets
Since commit 4959aebba8c0 ("virtio-net: use mtu size as buffer length
for big packets"), when guest gso is off, the allocated size for big
packets is not MAX_SKB_FRAGS * PAGE_SIZE anymore but depends on
negotiated MTU. The number of allocated frags for big packets is stored
in vi->big_packets_num_skbfrags.
Because the host announced buffer length can be malicious (e.g. the host
vhost_net driver's get_rx_bufs is modified to announce incorrect
length), we need a check in virtio_net receive path. Currently, the
check is not adapted to the new change which can lead to NULL page
pointer dereference in the below while loop when receiving length that
is larger than the allocated one.
This commit fixes the received length check corresponding to the new
change. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Don't overflow during division for dirty tracking
If pgshift is 63 then BITS_PER_TYPE(*bitmap->bitmap) * pgsize will overflow
to 0 and this triggers divide by 0.
In this case the index should just be 0, so reorganize things to divide
by shift and avoid hitting any overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement settime64 with -EOPNOTSUPP
ptp_clock_settime() assumes every ptp_clock has implemented settime64().
Stub it with -EOPNOTSUPP to prevent a NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
fscrypt: fix left shift underflow when inode->i_blkbits > PAGE_SHIFT
When simulating an nvme device on qemu with both logical_block_size and
physical_block_size set to 8 KiB, an error trace appears during
partition table reading at boot time. The issue is caused by
inode->i_blkbits being larger than PAGE_SHIFT, which leads to a left
shift of -1 and triggering a UBSAN warning.
[ 2.697306] ------------[ cut here ]------------
[ 2.697309] UBSAN: shift-out-of-bounds in fs/crypto/inline_crypt.c:336:37
[ 2.697311] shift exponent -1 is negative
[ 2.697315] CPU: 3 UID: 0 PID: 274 Comm: (udev-worker) Not tainted 6.18.0-rc2+ #34 PREEMPT(voluntary)
[ 2.697317] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 2.697320] Call Trace:
[ 2.697324] <TASK>
[ 2.697325] dump_stack_lvl+0x76/0xa0
[ 2.697340] dump_stack+0x10/0x20
[ 2.697342] __ubsan_handle_shift_out_of_bounds+0x1e3/0x390
[ 2.697351] bh_get_inode_and_lblk_num.cold+0x12/0x94
[ 2.697359] fscrypt_set_bio_crypt_ctx_bh+0x44/0x90
[ 2.697365] submit_bh_wbc+0xb6/0x190
[ 2.697370] block_read_full_folio+0x194/0x270
[ 2.697371] ? __pfx_blkdev_get_block+0x10/0x10
[ 2.697375] ? __pfx_blkdev_read_folio+0x10/0x10
[ 2.697377] blkdev_read_folio+0x18/0x30
[ 2.697379] filemap_read_folio+0x40/0xe0
[ 2.697382] filemap_get_pages+0x5ef/0x7a0
[ 2.697385] ? mmap_region+0x63/0xd0
[ 2.697389] filemap_read+0x11d/0x520
[ 2.697392] blkdev_read_iter+0x7c/0x180
[ 2.697393] vfs_read+0x261/0x390
[ 2.697397] ksys_read+0x71/0xf0
[ 2.697398] __x64_sys_read+0x19/0x30
[ 2.697399] x64_sys_call+0x1e88/0x26a0
[ 2.697405] do_syscall_64+0x80/0x670
[ 2.697410] ? __x64_sys_newfstat+0x15/0x20
[ 2.697414] ? x64_sys_call+0x204a/0x26a0
[ 2.697415] ? do_syscall_64+0xb8/0x670
[ 2.697417] ? irqentry_exit_to_user_mode+0x2e/0x2a0
[ 2.697420] ? irqentry_exit+0x43/0x50
[ 2.697421] ? exc_page_fault+0x90/0x1b0
[ 2.697422] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 2.697425] RIP: 0033:0x75054cba4a06
[ 2.697426] Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
[ 2.697427] RSP: 002b:00007fff973723a0 EFLAGS: 00000202 ORIG_RAX: 0000000000000000
[ 2.697430] RAX: ffffffffffffffda RBX: 00005ea9a2c02760 RCX: 000075054cba4a06
[ 2.697432] RDX: 0000000000002000 RSI: 000075054c190000 RDI: 000000000000001b
[ 2.697433] RBP: 00007fff973723c0 R08: 0000000000000000 R09: 0000000000000000
[ 2.697434] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
[ 2.697434] R13: 00005ea9a2c027c0 R14: 00005ea9a2be5608 R15: 00005ea9a2be55f0
[ 2.697436] </TASK>
[ 2.697436] ---[ end trace ]---
This situation can happen for block devices because when
CONFIG_TRANSPARENT_HUGEPAGE is enabled, the maximum logical_block_size
is 64 KiB. set_init_blocksize() then sets the block device
inode->i_blkbits to 13, which is within this limit.
File I/O does not trigger this problem because for filesystems that do
not support the FS_LBS feature, sb_set_blocksize() prevents
sb->s_blocksize_bits from being larger than PAGE_SHIFT. During inode
allocation, alloc_inode()->inode_init_always() assigns inode->i_blkbits
from sb->s_blocksize_bits. Currently, only xfs_fs_type has the FS_LBS
flag, and since xfs I/O paths do not reach submit_bh_wbc(), it does not
hit the left-shift underflow issue.
[EB: use folio_pos() and consolidate the two shifts by i_blkbits] |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix regbuf vector size truncation
There is a report of io_estimate_bvec_size() truncating the calculated
number of segments that leads to corruption issues. Check it doesn't
overflow "int"s used later. Rough but simple, can be improved on top. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: avoid data corruption on cq descriptor number
Since commit 30f241fcf52a ("xsk: Fix immature cq descriptor
production"), the descriptor number is stored in skb control block and
xsk_cq_submit_addr_locked() relies on it to put the umem addrs onto
pool's completion queue.
skb control block shouldn't be used for this purpose as after transmit
xsk doesn't have control over it and other subsystems could use it. This
leads to the following kernel panic due to a NULL pointer dereference.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 1 PID: 927 Comm: p4xsk.bin Not tainted 6.16.12+deb14-cloud-amd64 #1 PREEMPT(lazy) Debian 6.16.12-1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:xsk_destruct_skb+0xd0/0x180
[...]
Call Trace:
<IRQ>
? napi_complete_done+0x7a/0x1a0
ip_rcv_core+0x1bb/0x340
ip_rcv+0x30/0x1f0
__netif_receive_skb_one_core+0x85/0xa0
process_backlog+0x87/0x130
__napi_poll+0x28/0x180
net_rx_action+0x339/0x420
handle_softirqs+0xdc/0x320
? handle_edge_irq+0x90/0x1e0
do_softirq.part.0+0x3b/0x60
</IRQ>
<TASK>
__local_bh_enable_ip+0x60/0x70
__dev_direct_xmit+0x14e/0x1f0
__xsk_generic_xmit+0x482/0xb70
? __remove_hrtimer+0x41/0xa0
? __xsk_generic_xmit+0x51/0xb70
? _raw_spin_unlock_irqrestore+0xe/0x40
xsk_sendmsg+0xda/0x1c0
__sys_sendto+0x1ee/0x200
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x84/0x2f0
? __pfx_pollwake+0x10/0x10
? __rseq_handle_notify_resume+0xad/0x4c0
? restore_fpregs_from_fpstate+0x3c/0x90
? switch_fpu_return+0x5b/0xe0
? do_syscall_64+0x204/0x2f0
? do_syscall_64+0x204/0x2f0
? do_syscall_64+0x204/0x2f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
[...]
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: 0x1c000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
Instead use the skb destructor_arg pointer along with pointer tagging.
As pointers are always aligned to 8B, use the bottom bit to indicate
whether this a single address or an allocated struct containing several
addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: cancel mesh send timer when hdev removed
mesh_send_done timer is not canceled when hdev is removed, which causes
crash if the timer triggers after hdev is gone.
Cancel the timer when MGMT removes the hdev, like other MGMT timers.
Should fix the BUG: sporadically seen by BlueZ test bot
(in "Mesh - Send cancel - 1" test).
Log:
------
BUG: KASAN: slab-use-after-free in run_timer_softirq+0x76b/0x7d0
...
Freed by task 36:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x43/0x70
kfree+0x103/0x500
device_release+0x9a/0x210
kobject_put+0x100/0x1e0
vhci_release+0x18b/0x240
------ |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: Fix use-after-free in tipc_mon_reinit_self().
syzbot reported use-after-free of tipc_net(net)->monitors[]
in tipc_mon_reinit_self(). [0]
The array is protected by RTNL, but tipc_mon_reinit_self()
iterates over it without RTNL.
tipc_mon_reinit_self() is called from tipc_net_finalize(),
which is always under RTNL except for tipc_net_finalize_work().
Let's hold RTNL in tipc_net_finalize_work().
[0]:
BUG: KASAN: slab-use-after-free in __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
BUG: KASAN: slab-use-after-free in _raw_spin_lock_irqsave+0xa7/0xf0 kernel/locking/spinlock.c:162
Read of size 1 at addr ffff88805eae1030 by task kworker/0:7/5989
CPU: 0 UID: 0 PID: 5989 Comm: kworker/0:7 Not tainted syzkaller #0 PREEMPT_{RT,(full)}
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
Workqueue: events tipc_net_finalize_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
__kasan_check_byte+0x2a/0x40 mm/kasan/common.c:568
kasan_check_byte include/linux/kasan.h:399 [inline]
lock_acquire+0x8d/0x360 kernel/locking/lockdep.c:5842
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xa7/0xf0 kernel/locking/spinlock.c:162
rtlock_slowlock kernel/locking/rtmutex.c:1894 [inline]
rwbase_rtmutex_lock_state kernel/locking/spinlock_rt.c:160 [inline]
rwbase_write_lock+0xd3/0x7e0 kernel/locking/rwbase_rt.c:244
rt_write_lock+0x76/0x110 kernel/locking/spinlock_rt.c:243
write_lock_bh include/linux/rwlock_rt.h:99 [inline]
tipc_mon_reinit_self+0x79/0x430 net/tipc/monitor.c:718
tipc_net_finalize+0x115/0x190 net/tipc/net.c:140
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3319
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3400
kthread+0x70e/0x8a0 kernel/kthread.c:463
ret_from_fork+0x439/0x7d0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 6089:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x1a8/0x320 mm/slub.c:4407
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
tipc_mon_create+0xc3/0x4d0 net/tipc/monitor.c:657
tipc_enable_bearer net/tipc/bearer.c:357 [inline]
__tipc_nl_bearer_enable+0xe16/0x13f0 net/tipc/bearer.c:1047
__tipc_nl_compat_doit net/tipc/netlink_compat.c:371 [inline]
tipc_nl_compat_doit+0x3bc/0x5f0 net/tipc/netlink_compat.c:393
tipc_nl_compat_handle net/tipc/netlink_compat.c:-1 [inline]
tipc_nl_compat_recv+0x83c/0xbe0 net/tipc/netlink_compat.c:1321
genl_family_rcv_msg_doit+0x215/0x300 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x60e/0x790 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x208/0x470 net/netlink/af_netlink.c:2552
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x846/0xa10 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x805/0xb30 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:729
____sys_sendmsg+0x508/0x820 net/socket.c:2614
___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668
__sys_sendmsg net/socket.c:2700 [inline]
__do_sys_sendmsg net/socket.c:2705 [inline]
__se_sys_sendmsg net/socket.c:2703 [inline]
__x64_sys_sendmsg+0x1a1/0x260 net/socket.c:2703
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/
---truncated--- |