| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: Fix race between rfkill and nci_unregister_device().
syzbot reported the splat below [0] without a repro.
It indicates that struct nci_dev.cmd_wq had been destroyed before
nci_close_device() was called via rfkill.
nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which
(I think) was called from virtual_ncidev_close() when syzbot close()d
an fd of virtual_ncidev.
The problem is that nci_unregister_device() destroys nci_dev.cmd_wq
first and then calls nfc_unregister_device(), which removes the
device from rfkill by rfkill_unregister().
So, the device is still visible via rfkill even after nci_dev.cmd_wq
is destroyed.
Let's unregister the device from rfkill first in nci_unregister_device().
Note that we cannot call nfc_unregister_device() before
nci_close_device() because
1) nfc_unregister_device() calls device_del() which frees
all memory allocated by devm_kzalloc() and linked to
ndev->conn_info_list
2) nci_rx_work() could try to queue nci_conn_info to
ndev->conn_info_list which could be leaked
Thus, nfc_unregister_device() is split into two functions so we
can remove rfkill interfaces only before nci_close_device().
[0]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349
Modules linked in:
CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026
RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline]
RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline]
RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187
Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f
RSP: 0018:ffffc9000c767680 EFLAGS: 00010046
RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000
RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0
RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4
R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2
R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30
FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0
Call Trace:
<TASK>
lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868
touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940
__flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982
nci_close_device+0x302/0x630 net/nfc/nci/core.c:567
nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639
nfc_dev_down+0x152/0x290 net/nfc/core.c:161
nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179
rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346
rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301
vfs_write+0x29a/0xb90 fs/read_write.c:684
ksys_write+0x150/0x270 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa59b39acb9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9
RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007
RBP: 00007fa59b408bf7 R08:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix a race issue related to the operation on bpf_bound_progs list
The netdevsim driver lacks a protection mechanism for operations on the
bpf_bound_progs list. When the nsim_bpf_create_prog() performs
list_add_tail, it is possible that nsim_bpf_destroy_prog() is
simultaneously performs list_del. Concurrent operations on the list may
lead to list corruption and trigger a kernel crash as follows:
[ 417.290971] kernel BUG at lib/list_debug.c:62!
[ 417.290983] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 417.290992] CPU: 10 PID: 168 Comm: kworker/10:1 Kdump: loaded Not tainted 6.19.0-rc5 #1
[ 417.291003] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 417.291007] Workqueue: events bpf_prog_free_deferred
[ 417.291021] RIP: 0010:__list_del_entry_valid_or_report+0xa7/0xc0
[ 417.291034] Code: a8 ff 0f 0b 48 89 fe 48 89 ca 48 c7 c7 48 a1 eb ae e8 ed fb a8 ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 80 a1 eb ae e8 d9 fb a8 ff <0f> 0b 48 89 d1 48 c7 c7 d0 a1 eb ae 48 89 f2 48 89 c6 e8 c2 fb a8
[ 417.291040] RSP: 0018:ffffb16a40807df8 EFLAGS: 00010246
[ 417.291046] RAX: 000000000000006d RBX: ffff8e589866f500 RCX: 0000000000000000
[ 417.291051] RDX: 0000000000000000 RSI: ffff8e59f7b23180 RDI: ffff8e59f7b23180
[ 417.291055] RBP: ffffb16a412c9000 R08: 0000000000000000 R09: 0000000000000003
[ 417.291059] R10: ffffb16a40807c80 R11: ffffffffaf9edce8 R12: ffff8e594427ac20
[ 417.291063] R13: ffff8e59f7b44780 R14: ffff8e58800b7a05 R15: 0000000000000000
[ 417.291074] FS: 0000000000000000(0000) GS:ffff8e59f7b00000(0000) knlGS:0000000000000000
[ 417.291079] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 417.291083] CR2: 00007fc4083efe08 CR3: 00000001c3626006 CR4: 0000000000770ee0
[ 417.291088] PKRU: 55555554
[ 417.291091] Call Trace:
[ 417.291096] <TASK>
[ 417.291103] nsim_bpf_destroy_prog+0x31/0x80 [netdevsim]
[ 417.291154] __bpf_prog_offload_destroy+0x2a/0x80
[ 417.291163] bpf_prog_dev_bound_destroy+0x6f/0xb0
[ 417.291171] bpf_prog_free_deferred+0x18e/0x1a0
[ 417.291178] process_one_work+0x18a/0x3a0
[ 417.291188] worker_thread+0x27b/0x3a0
[ 417.291197] ? __pfx_worker_thread+0x10/0x10
[ 417.291207] kthread+0xe5/0x120
[ 417.291214] ? __pfx_kthread+0x10/0x10
[ 417.291221] ret_from_fork+0x31/0x50
[ 417.291230] ? __pfx_kthread+0x10/0x10
[ 417.291236] ret_from_fork_asm+0x1a/0x30
[ 417.291246] </TASK>
Add a mutex lock, to prevent simultaneous addition and deletion operations
on the list. |
| In the Linux kernel, the following vulnerability has been resolved:
slab: fix kmalloc_nolock() context check for PREEMPT_RT
On PREEMPT_RT kernels, local_lock becomes a sleeping lock. The current
check in kmalloc_nolock() only verifies we're not in NMI or hard IRQ
context, but misses the case where preemption is disabled.
When a BPF program runs from a tracepoint with preemption disabled
(preempt_count > 0), kmalloc_nolock() proceeds to call
local_lock_irqsave() which attempts to acquire a sleeping lock,
triggering:
BUG: sleeping function called from invalid context
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 6128
preempt_count: 2, expected: 0
Fix this by checking !preemptible() on PREEMPT_RT, which directly
expresses the constraint that we cannot take a sleeping lock when
preemption is disabled. This encompasses the previous checks for NMI
and hard IRQ contexts while also catching cases where preemption is
disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Add recursion protection in kernel stack trace recording
A bug was reported about an infinite recursion caused by tracing the rcu
events with the kernel stack trace trigger enabled. The stack trace code
called back into RCU which then called the stack trace again.
Expand the ftrace recursion protection to add a set of bits to protect
events from recursion. Each bit represents the context that the event is
in (normal, softirq, interrupt and NMI).
Have the stack trace code use the interrupt context to protect against
recursion.
Note, the bug showed an issue in both the RCU code as well as the tracing
stacktrace code. This only handles the tracing stack trace side of the
bug. The RCU fix will be handled separately. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conncount: update last_gc only when GC has been performed
Currently last_gc is being updated everytime a new connection is
tracked, that means that it is updated even if a GC wasn't performed.
With a sufficiently high packet rate, it is possible to always bypass
the GC, causing the list to grow infinitely.
Update the last_gc value only when a GC has been actually performed. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): fix error message
Sinc commit 79a6d1bfe114 ("can: gs_usb: gs_usb_receive_bulk_callback():
unanchor URL on usb_submit_urb() error") a failing resubmit URB will print
an info message.
In the case of a short read where netdev has not yet been assigned,
initialize as NULL to avoid dereferencing an undefined value. Also report
the error value of the failed resubmit. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8m-blk-ctrl: Remove separate rst and clk mask for 8mq vpu
For i.MX8MQ platform, the ADB in the VPUMIX domain has no separate reset
and clock enable bits, but is ungated and reset together with the VPUs.
So we can't reset G1 or G2 separately, it may led to the system hang.
Remove rst_mask and clk_mask of imx8mq_vpu_blk_ctl_domain_data.
Let imx8mq_vpu_power_notifier() do really vpu reset. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names
The hp-bioscfg driver attempts to register kobjects with empty names when
the HP BIOS returns attributes with empty name strings. This causes
multiple kernel warnings:
kobject: (00000000135fb5e6): attempted to be registered with empty name!
WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310
Add validation in hp_init_bios_buffer_attribute() to check if the
attribute name is empty after parsing it from the WMI buffer. If empty,
log a debug message and skip registration of that attribute, allowing the
module to continue processing other valid attributes. |
| The Address Bar Ads plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the URL Path in all versions up to, and including, 1.0.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: synopsys: dw-dp: fix error paths of dw_dp_bind
Fix several issues in dw_dp_bind() error handling:
1. Missing return after drm_bridge_attach() failure - the function
continued execution instead of returning an error.
2. Resource leak: drm_dp_aux_register() is not a devm function, so
drm_dp_aux_unregister() must be called on all error paths after
aux registration succeeds. This affects errors from:
- drm_bridge_attach()
- phy_init()
- devm_add_action_or_reset()
- platform_get_irq()
- devm_request_threaded_irq()
3. Bug fix: platform_get_irq() returns the IRQ number or a negative
error code, but the error path was returning ERR_PTR(ret) instead
of ERR_PTR(dp->irq).
Use a goto label for cleanup to ensure consistent error handling. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix iloc.bh leak in ext4_xattr_inode_update_ref
The error branch for ext4_xattr_inode_update_ref forget to release the
refcount for iloc.bh. Find this when review code. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Do not allow userspace to trigger kernel warnings in drm_gem_change_handle_ioctl()
Since GEM bo handles are u32 in the uapi and the internal implementation
uses idr_alloc() which uses int ranges, passing a new handle larger than
INT_MAX trivially triggers a kernel warning:
idr_alloc():
...
if (WARN_ON_ONCE(start < 0))
return -EINVAL;
...
Fix it by rejecting new handles above INT_MAX and at the same time make
the end limit calculation more obvious by moving into int domain. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: correctly decode TTLM with default link map
TID-To-Link Mapping (TTLM) elements do not contain any link mapping
presence indicator if a default mapping is used and parsing needs to be
skipped.
Note that access points should not explicitly report an advertised TTLM
with a default mapping as that is the implied mapping if the element is
not included, this is even the case when switching back to the default
mapping. However, mac80211 would incorrectly parse the frame and would
also read one byte beyond the end of the element. |
| In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: Fix memory leak in octep_device_setup()
In octep_device_setup(), if octep_ctrl_net_init() fails, the function
returns directly without unmapping the mapped resources and freeing the
allocated configuration memory.
Fix this by jumping to the unsupported_dev label, which performs the
necessary cleanup. This aligns with the error handling logic of other
paths in this function.
Compile tested only. Issue found using a prototype static analysis tool
and code review. |
| The LatePoint – Calendar Booking Plugin for Appointments and Events plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 5.2.5. This is due to the 'call_by_route_name' function in the routing layer only validating user capabilities without enforcing nonce verification. This makes it possible for unauthenticated attackers to perform multiple administrative actions via forged requests granted they can trick a site administrator into performing an action such as clicking on a link. |
| The Smart Forms plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the 'rednao_smart_forms_get_campaigns' AJAX action in all versions up to, and including, 2.6.99. This makes it possible for authenticated attackers, with Subscriber-level access and above, to retrieve donation campaign data including campaign IDs and names. |
| The BFG Tools – Extension Zipper plugin for WordPress is vulnerable to Path Traversal in all versions up to, and including, 1.0.7. This is due to insufficient input validation on the user-supplied `first_file` parameter in the `zip()` function. This makes it possible for authenticated attackers, with Administrator-level access and above, to read the contents of arbitrary files and directories outside the intended `/wp-content/plugins/` directory, which can contain sensitive information such as wp-config.php. |
| The WP Last Modified Info plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 1.9.5. This is due to the plugin not validating a user's access to a post before modifying its metadata in the 'bulk_save' AJAX action. This makes it possible for authenticated attackers, with Author-level access and above, to update the last modified metadata and lock the modification date of arbitrary posts, including those created by Administrators via the 'post_ids' parameter. |
| A State Pollution vulnerability was discovered in the TON Virtual Machine (TVM) before v2025.04. The issue exists in the RUNVM instruction logic (VmState::run_child_vm), which is responsible for initializing child virtual machines. The operation moves critical resources (specifically libraries and log) from the parent state to a new child state in a non-atomic manner. If an Out-of-Gas (OOG) exception occurs after resources are moved but before the state transition is finalized, the parent VM retains a corrupted state where these resources are emptied/invalid. Because RUNVM supports gas isolation, the parent VM continues execution with this corrupted state, leading to unexpected behavior or denial of service within the contract's context. |